scholarly journals Multiple Morphological Constraints-Based Complex Gland Segmentation in Colorectal Cancer Pathology Image Analysis

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Kun Zhang ◽  
JunHong Fu ◽  
Liang Hua ◽  
Peijian Zhang ◽  
Yeqin Shao ◽  
...  

Histological assessment of glands is one of the major concerns in colon cancer grading. Considering that poorly differentiated colorectal glands cannot be accurately segmented, we propose an approach for segmentation of glands in colon cancer images, based on the characteristics of lumens and rough gland boundaries. First, we use a U-net for stain separation to obtain H-stain, E-stain, and background stain intensity maps. Subsequently, epithelial nucleus is identified on the histopathology images, and the lumen segmentation is performed on the background intensity map. Then, we use the axis of least inertia-based similar triangles as the spatial characteristics of lumens and epithelial nucleus, and a triangle membership is used to select glandular contour candidates from epithelial nucleus. By connecting lumens and epithelial nucleus, more accurate gland segmentation is performed based on the rough gland boundary. The proposed stain separation approach is unsupervised, and the stain separation makes the category information contained in the H&E image easy to identify and deal with the uneven stain intensity and the inconspicuous stain difference. In this project, we use deep learning to achieve stain separation by predicting the stain coefficient. Under the deep learning framework, we design a stain coefficient interval model to improve the stain generalization performance. Another innovation is that we propose the combination of the internal lumen contour of adenoma and the outer contour of epithelial cells to obtain a precise gland contour. We compare the performance of the proposed algorithm against that of several state-of-the-art technologies on publicly available datasets. The results show that the segmentation approach combining the characteristics of lumens and rough gland boundary has better segmentation accuracy.

2021 ◽  
Vol 40 (3) ◽  
pp. 1-15
Author(s):  
Shi-Sheng Huang ◽  
Ze-Yu Ma ◽  
Tai-Jiang Mu ◽  
Hongbo Fu ◽  
Shi-Min Hu

Online 3D semantic segmentation, which aims to perform real-time 3D scene reconstruction along with semantic segmentation, is an important but challenging topic. A key challenge is to strike a balance between efficiency and segmentation accuracy. There are very few deep-learning-based solutions to this problem, since the commonly used deep representations based on volumetric-grids or points do not provide efficient 3D representation and organization structure for online segmentation. Observing that on-surface supervoxels, i.e., clusters of on-surface voxels, provide a compact representation of 3D surfaces and brings efficient connectivity structure via supervoxel clustering, we explore a supervoxel-based deep learning solution for this task. To this end, we contribute a novel convolution operation (SVConv) directly on supervoxels. SVConv can efficiently fuse the multi-view 2D features and 3D features projected on supervoxels during the online 3D reconstruction, and leads to an effective supervoxel-based convolutional neural network, termed as Supervoxel-CNN , enabling 2D-3D joint learning for 3D semantic prediction. With the Supervoxel-CNN , we propose a clustering-then-prediction online 3D semantic segmentation approach. The extensive evaluations on the public 3D indoor scene datasets show that our approach significantly outperforms the existing online semantic segmentation systems in terms of efficiency or accuracy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257001
Author(s):  
Rubi Quiñones ◽  
Francisco Munoz-Arriola ◽  
Sruti Das Choudhury ◽  
Ashok Samal

Cosegmentation is a newly emerging computer vision technique used to segment an object from the background by processing multiple images at the same time. Traditional plant phenotyping analysis uses thresholding segmentation methods which result in high segmentation accuracy. Although there are proposed machine learning and deep learning algorithms for plant segmentation, predictions rely on the specific features being present in the training set. The need for a multi-featured dataset and analytics for cosegmentation becomes critical to better understand and predict plants’ responses to the environment. High-throughput phenotyping produces an abundance of data that can be leveraged to improve segmentation accuracy and plant phenotyping. This paper introduces four datasets consisting of two plant species, Buckwheat and Sunflower, each split into control and drought conditions. Each dataset has three modalities (Fluorescence, Infrared, and Visible) with 7 to 14 temporal images that are collected in a high-throughput facility at the University of Nebraska-Lincoln. The four datasets (which will be collected under the CosegPP data repository in this paper) are evaluated using three cosegmentation algorithms: Markov random fields-based, Clustering-based, and Deep learning-based cosegmentation, and one commonly used segmentation approach in plant phenotyping. The integration of CosegPP with advanced cosegmentation methods will be the latest benchmark in comparing segmentation accuracy and finding areas of improvement for cosegmentation methodology.


Author(s):  
Lery Sakti Ramba

The purpose of this research is to design home automation system that can be controlled using voice commands. This research was conducted by studying other research related to the topics in this research, discussing with competent parties, designing systems, testing systems, and conducting analyzes based on tests that have been done. In this research voice recognition system was designed using Deep Learning Convolutional Neural Networks (DL-CNN). The CNN model that has been designed will then be trained to recognize several kinds of voice commands. The result of this research is a speech recognition system that can be used to control several electronic devices connected to the system. The speech recognition system in this research has a 100% success rate in room conditions with background intensity of 24dB (silent), 67.67% in room conditions with 42dB background noise intensity, and only 51.67% in room conditions with background intensity noise 52dB (noisy). The percentage of the success of the speech recognition system in this research is strongly influenced by the intensity of background noise in a room. Therefore, to obtain optimal results, the speech recognition system in this research is more suitable for use in rooms with low intensity background noise.


2020 ◽  
Author(s):  
Raniyaharini R ◽  
Madhumitha K ◽  
Mishaa S ◽  
Virajaravi R

2020 ◽  
Author(s):  
Jinseok Lee

BACKGROUND The coronavirus disease (COVID-19) has explosively spread worldwide since the beginning of 2020. According to a multinational consensus statement from the Fleischner Society, computed tomography (CT) can be used as a relevant screening tool owing to its higher sensitivity for detecting early pneumonic changes. However, physicians are extremely busy fighting COVID-19 in this era of worldwide crisis. Thus, it is crucial to accelerate the development of an artificial intelligence (AI) diagnostic tool to support physicians. OBJECTIVE We aimed to quickly develop an AI technique to diagnose COVID-19 pneumonia and differentiate it from non-COVID pneumonia and non-pneumonia diseases on CT. METHODS A simple 2D deep learning framework, named fast-track COVID-19 classification network (FCONet), was developed to diagnose COVID-19 pneumonia based on a single chest CT image. FCONet was developed by transfer learning, using one of the four state-of-art pre-trained deep learning models (VGG16, ResNet50, InceptionV3, or Xception) as a backbone. For training and testing of FCONet, we collected 3,993 chest CT images of patients with COVID-19 pneumonia, other pneumonia, and non-pneumonia diseases from Wonkwang University Hospital, Chonnam National University Hospital, and the Italian Society of Medical and Interventional Radiology public database. These CT images were split into a training and a testing set at a ratio of 8:2. For the test dataset, the diagnostic performance to diagnose COVID-19 pneumonia was compared among the four pre-trained FCONet models. In addition, we tested the FCONet models on an additional external testing dataset extracted from the embedded low-quality chest CT images of COVID-19 pneumonia in recently published papers. RESULTS Of the four pre-trained models of FCONet, the ResNet50 showed excellent diagnostic performance (sensitivity 99.58%, specificity 100%, and accuracy 99.87%) and outperformed the other three pre-trained models in testing dataset. In additional external test dataset using low-quality CT images, the detection accuracy of the ResNet50 model was the highest (96.97%), followed by Xception, InceptionV3, and VGG16 (90.71%, 89.38%, and 87.12%, respectively). CONCLUSIONS The FCONet, a simple 2D deep learning framework based on a single chest CT image, provides excellent diagnostic performance in detecting COVID-19 pneumonia. Based on our testing dataset, the ResNet50-based FCONet might be the best model, as it outperformed other FCONet models based on VGG16, Xception, and InceptionV3.


Sign in / Sign up

Export Citation Format

Share Document