scholarly journals Pose-Guided Part-Based Adaptive Pyramid Features for Occluded Person Reidentification

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xiaobing Lin ◽  
Jilin Li ◽  
Zengxi Huang ◽  
Xiaoqin Tang

Reidentifying an occluded person across nonoverlapping cameras is still a challenging task. In this work, we propose a novel pose-guided part-based adaptive pyramid neural network for occluded person reidentification. Firstly, to alleviate the impact of occlusion, we utilize pose landmarks to generate pose-guided attention maps. The attention maps will help the model focus on the nonoccluded regions. Secondly, we use pyramid pooling to extract multiscale features in order to address the scale variation problem. The generated pyramid features are then multiplied by attention maps to achieve pose-guided adaptive pyramid features. Thirdly, we propose a pose-guided body part partition scheme to deal with the alignment problem. Accordingly, the adaptive pyramid features are divided into partitions and fed into individual fully connected layers. In the end, all the part-based matching scores are fused with a weighted sum rule for person reidentification. The effectiveness of our method is clearly validated by the experimental results on two popular occluded and holistic datasets, i.e., Occluded-DukeMTMC and the Market-1501.

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Batyrbek Alimkhanuly ◽  
Joon Sohn ◽  
Ik-Joon Chang ◽  
Seunghyun Lee

AbstractRecent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. Individual device design, optimized interconnects, and careful material selection are key factors determining the overall computation performance. In this work, the impact of replacing conventional devices with microfabricated, graphene-based VRRAM is investigated for circuit and algorithmic levels. By exploiting a sub-nm thin 2D material, the VRRAM array demonstrates an improved read/write margins and read inaccuracy level for the weighted-sum procedure. Moreover, energy consumption is significantly reduced in array programming operations. Finally, an XNOR logic-inspired architecture designed to integrate 1-bit ternary precision synaptic weights into graphene-based VRRAM is introduced. Simulations on VRRAM with metal and graphene word-planes demonstrate 83.5 and 94.1% recognition accuracy, respectively, denoting the importance of material innovation in neuromorphic computing.


1984 ◽  
Vol 62 (8) ◽  
pp. 764-770 ◽  
Author(s):  
John A. Montgomery ◽  
Kwang-Bock Yoo ◽  
Herbert Überall ◽  
B. Bosco

Energy-weighted sum rules with separated isospin contributions for arbitrary operators and multipolarities are developed for photonuclear and electron-scattering transitions. The Kurath sum rule is contained as a special case. Applying the sum rule to magnetic dipole transitions, ensuing numerical predictions for non-self-conjugate nuclei are compared with experimental results.


2021 ◽  
pp. 1-11
Author(s):  
Sunil Rao ◽  
Vivek Narayanaswamy ◽  
Michael Esposito ◽  
Jayaraman J. Thiagarajan ◽  
Andreas Spanias

Reliable and rapid non-invasive testing has become essential for COVID-19 diagnosis and tracking statistics. Recent studies motivate the use of modern machine learning (ML) and deep learning (DL) tools that utilize features of coughing sounds for COVID-19 diagnosis. In this paper, we describe system designs that we developed for COVID-19 cough detection with the long-term objective of embedding them in a testing device. More specifically, we use log-mel spectrogram features extracted from the coughing audio signal and design a series of customized deep learning algorithms to develop fast and automated diagnosis tools for COVID-19 detection. We first explore the use of a deep neural network with fully connected layers. Additionally, we investigate prospects of efficient implementation by examining the impact on the detection performance by pruning the fully connected neural network based on the Lottery Ticket Hypothesis (LTH) optimization process. In general, pruned neural networks have been shown to provide similar performance gains to that of unpruned networks with reduced computational complexity in a variety of signal processing applications. Finally, we investigate the use of convolutional neural network architectures and in particular the VGG-13 architecture which we tune specifically for this application. Our results show that a unique ensembling of the VGG-13 architecture trained using a combination of binary cross entropy and focal losses with data augmentation significantly outperforms the fully connected networks and other recently proposed baselines on the DiCOVA 2021 COVID-19 cough audio dataset. Our customized VGG-13 model achieves an average validation AUROC of 82.23% and a test AUROC of 78.3% at a sensitivity of 80.49%.


2019 ◽  
Vol 26 (11) ◽  
pp. 1181-1188 ◽  
Author(s):  
Isabel Segura-Bedmar ◽  
Pablo Raez

Abstract Objective The goal of the 2018 n2c2 shared task on cohort selection for clinical trials (track 1) is to identify which patients meet the selection criteria for clinical trials. Cohort selection is a particularly demanding task to which natural language processing and deep learning can make a valuable contribution. Our goal is to evaluate several deep learning architectures to deal with this task. Materials and Methods Cohort selection can be formulated as a multilabeling problem whose goal is to determine which criteria are met for each patient record. We explore several deep learning architectures such as a simple convolutional neural network (CNN), a deep CNN, a recurrent neural network (RNN), and CNN-RNN hybrid architecture. Although our architectures are similar to those proposed in existing deep learning systems for text classification, our research also studies the impact of using a fully connected feedforward layer on the performance of these architectures. Results The RNN and hybrid models provide the best results, though without statistical significance. The use of the fully connected feedforward layer improves the results for all the architectures, except for the hybrid architecture. Conclusions Despite the limited size of the dataset, deep learning methods show promising results in learning useful features for the task of cohort selection. Therefore, they can be used as a previous filter for cohort selection for any clinical trial with a minimum of human intervention, thus reducing the cost and time of clinical trials significantly.


2021 ◽  
Vol 11 (4) ◽  
pp. 1361
Author(s):  
Morad Danishvar ◽  
Sebelan Danishvar ◽  
Francisco Souza ◽  
Pedro Sousa ◽  
Alireza Mousavi

Milling operations in various production processes are among the most important factors in determining the quality, stability, and consumption of energy. Optimizing and stabilizing the milling process is a non-linear multivariable control problem. In specific processes that deal with natural materials (e.g., cement, pulp and paper, beverage brewery and water/wastewater treatment industries). A novel data-driven approach utilizing real-time monitoring control technology is proposed for the purpose of optimizing the grinding of cement processing. A combined event modeling for feature extraction and the fully connected deep neural network model to predict the coarseness of cement particles is proposed. The resulting prediction allows a look ahead control strategy and corrective actions. The proposed solution has been deployed in a number of cement plants around the world. The resultant control strategy has enabled the operators to take corrective actions before the coarse return increases, both in autonomous and manual mode. The impact of the solution has improved efficiency resource use by 10% of resources, the plant stability, and the overall energy efficiency of the plant.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Houda Benaliouche ◽  
Mohamed Touahria

This research investigates the comparative performance from three different approaches for multimodal recognition of combined iris and fingerprints: classical sum rule, weighted sum rule, and fuzzy logic method. The scores from the different biometric traits of iris and fingerprint are fused at the matching score and the decision levels. The scores combination approach is used after normalization of both scores using the min-max rule. Our experimental results suggest that the fuzzy logic method for the matching scores combinations at the decision level is the best followed by the classical weighted sum rule and the classical sum rule in order. The performance evaluation of each method is reported in terms of matching time, error rates, and accuracy after doing exhaustive tests on the public CASIA-Iris databases V1 and V2 and the FVC 2004 fingerprint database. Experimental results prior to fusion and after fusion are presented followed by their comparison with related works in the current literature. The fusion by fuzzy logic decision mimics the human reasoning in a soft and simple way and gives enhanced results.


2020 ◽  
Vol 39 (6) ◽  
pp. 8927-8935
Author(s):  
Bing Zheng ◽  
Dawei Yun ◽  
Yan Liang

Under the impact of COVID-19, research on behavior recognition are highly needed. In this paper, we combine the algorithm of self-adaptive coder and recurrent neural network to realize the research of behavior pattern recognition. At present, most of the research of human behavior recognition is focused on the video data, which is based on the video number. At the same time, due to the complexity of video image data, it is easy to violate personal privacy. With the rapid development of Internet of things technology, it has attracted the attention of a large number of experts and scholars. Researchers have tried to use many machine learning methods, such as random forest, support vector machine and other shallow learning methods, which perform well in the laboratory environment, but there is still a long way to go from practical application. In this paper, a recursive neural network algorithm based on long and short term memory (LSTM) is proposed to realize the recognition of behavior patterns, so as to improve the accuracy of human activity behavior recognition.


2013 ◽  
Vol 12 (2) ◽  
pp. 3255-3260
Author(s):  
Stelian Stancu ◽  
Alexandra Maria Constantin

Instilment, on a European level, of a state incompatible with the state of stability on a macroeconomic level and in the financial-banking system lead to continuous growth of vulnerability of European economies, situated at the verge of an outburst of sovereign debt crises. In this context, the current papers main objective is to produce a study regarding the vulnerability of European economies faced with potential outburst of sovereign debt crisis, which implies quantitative analysis of the impact of sovereign debt on the sensitivity of the European Unions economies. The paper also entails the following specific objectives: completing an introduction in the current European economic context, conceptualization of the notion of “sovereign debt crisis, presenting the methodology and obtained empirical results, as well as exposition of the conclusions.


2019 ◽  
Vol 24 (3) ◽  
pp. 220-228
Author(s):  
Gusti Alfahmi Anwar ◽  
Desti Riminarsih

Panthera merupakan genus dari keluarga kucing yang memiliki empat spesies popular yaitu, harimau, jaguar, macan tutul, singa. Singa memiliki warna keemasan dan tidak memilki motif, harimau memiliki motif loreng dengan garis-garis panjang, jaguar memiliki tubuh yang lebih besar dari pada macan tutul serta memiliki motif tutul yang lebih lebar, sedangkan macan tutul memiliki tubuh yang sedikit lebih ramping dari pada jaguar dan memiliki tutul yang tidak terlalu lebar. Pada penelitian ini dilakukan klasifikasi genus panther yaitu harimau, jaguar, macan tutul, dan singa menggunakan metode Convolutional Neural Network. Model Convolutional Neural Network yang digunakan memiliki 1 input layer, 5 convolution layer, dan 2 fully connected layer. Dataset yang digunakan berupa citra harimau, jaguar, macan tutul, dan singa. Data training terdiri dari 3840 citra, data validasi sebanyak 960 citra, dan data testing sebanyak 800 citra. Hasil akurasi dari pelatihan model untuk training yaitu 92,31% dan validasi yaitu 81,88%, pengujian model menggunakan dataset testing mendapatan hasil 68%. Hasil akurasi prediksi didapatkan dari nilai F1-Score pada pengujian didapatkan sebesar 78% untuk harimau, 70% untuk jaguar, 37% untuk macan tutul, 74% untuk singa. Macan tutul mendapatkan akurasi terendah dibandingkan 3 hewan lainnya tetapi lebih baik dibandingkan hasil penelitian sebelumnya.


2016 ◽  
Author(s):  
Leonardo Becchetti ◽  
Maurizio Fiaschetti ◽  
Francesco Salustri

Sign in / Sign up

Export Citation Format

Share Document