scholarly journals COVID-19 detection using cough sound analysis and deep learning algorithms

2021 ◽  
pp. 1-11
Author(s):  
Sunil Rao ◽  
Vivek Narayanaswamy ◽  
Michael Esposito ◽  
Jayaraman J. Thiagarajan ◽  
Andreas Spanias

Reliable and rapid non-invasive testing has become essential for COVID-19 diagnosis and tracking statistics. Recent studies motivate the use of modern machine learning (ML) and deep learning (DL) tools that utilize features of coughing sounds for COVID-19 diagnosis. In this paper, we describe system designs that we developed for COVID-19 cough detection with the long-term objective of embedding them in a testing device. More specifically, we use log-mel spectrogram features extracted from the coughing audio signal and design a series of customized deep learning algorithms to develop fast and automated diagnosis tools for COVID-19 detection. We first explore the use of a deep neural network with fully connected layers. Additionally, we investigate prospects of efficient implementation by examining the impact on the detection performance by pruning the fully connected neural network based on the Lottery Ticket Hypothesis (LTH) optimization process. In general, pruned neural networks have been shown to provide similar performance gains to that of unpruned networks with reduced computational complexity in a variety of signal processing applications. Finally, we investigate the use of convolutional neural network architectures and in particular the VGG-13 architecture which we tune specifically for this application. Our results show that a unique ensembling of the VGG-13 architecture trained using a combination of binary cross entropy and focal losses with data augmentation significantly outperforms the fully connected networks and other recently proposed baselines on the DiCOVA 2021 COVID-19 cough audio dataset. Our customized VGG-13 model achieves an average validation AUROC of 82.23% and a test AUROC of 78.3% at a sensitivity of 80.49%.

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4953
Author(s):  
Sara Al-Emadi ◽  
Abdulla Al-Ali ◽  
Abdulaziz Al-Ali

Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone’s acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mohamed Elgendi ◽  
Muhammad Umer Nasir ◽  
Qunfeng Tang ◽  
David Smith ◽  
John-Paul Grenier ◽  
...  

Chest X-ray imaging technology used for the early detection and screening of COVID-19 pneumonia is both accessible worldwide and affordable compared to other non-invasive technologies. Additionally, deep learning methods have recently shown remarkable results in detecting COVID-19 on chest X-rays, making it a promising screening technology for COVID-19. Deep learning relies on a large amount of data to avoid overfitting. While overfitting can result in perfect modeling on the original training dataset, on a new testing dataset it can fail to achieve high accuracy. In the image processing field, an image augmentation step (i.e., adding more training data) is often used to reduce overfitting on the training dataset, and improve prediction accuracy on the testing dataset. In this paper, we examined the impact of geometric augmentations as implemented in several recent publications for detecting COVID-19. We compared the performance of 17 deep learning algorithms with and without different geometric augmentations. We empirically examined the influence of augmentation with respect to detection accuracy, dataset diversity, augmentation methodology, and network size. Contrary to expectation, our results show that the removal of recently used geometrical augmentation steps actually improved the Matthews correlation coefficient (MCC) of 17 models. The MCC without augmentation (MCC = 0.51) outperformed four recent geometrical augmentations (MCC = 0.47 for Data Augmentation 1, MCC = 0.44 for Data Augmentation 2, MCC = 0.48 for Data Augmentation 3, and MCC = 0.49 for Data Augmentation 4). When we retrained a recently published deep learning without augmentation on the same dataset, the detection accuracy significantly increased, with a χMcNemar′s statistic2=163.2 and a p-value of 2.23 × 10−37. This is an interesting finding that may improve current deep learning algorithms using geometrical augmentations for detecting COVID-19. We also provide clinical perspectives on geometric augmentation to consider regarding the development of a robust COVID-19 X-ray-based detector.


2020 ◽  
Vol 2020 (8) ◽  
pp. 184-1-184-9
Author(s):  
Jianhang Chen ◽  
Qian Lin ◽  
Jan P. Allebach

In this paper, we propose a new method for printed mottle defect grading. By training the data scanned from printed images, our deep learning method based on a Convolutional Neural Network (CNN) can classify various images with different mottle defect levels. Different from traditional methods to extract the image features, our method utilizes a CNN for the first time to extract the features automatically without manual feature design. Different data augmentation methods such as rotation, flip, zoom, and shift are also applied to the original dataset. The final network is trained by transfer learning using the ResNet-34 network pretrained on the ImageNet dataset connected with fully connected layers. The experimental results show that our approach leads to a 13.16% error rate in the T dataset, which is a dataset with a single image content, and a 20.73% error rate in a combined dataset with different contents.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Dan Yang ◽  
Jing Zhang ◽  
Sifeng Wang ◽  
XueDong Zhang

Recommender system has received tremendous attention and has been studied by scholars in recent years due to its wide applications in different domains. With the in-depth study and application of deep learning algorithms, deep neural network is gradually used in recommender systems. The success of modern recommender system mainly depends on the understanding and application of the context of recommendation requests. However, when leveraging deep learning algorithms for recommendation, the impact of context information such as recommendation time and location is often neglected. In this paper, a time-aware convolutional neural network- (CNN-) based personalized recommender system TC-PR is proposed. TC-PR actively recommends items that meet users’ interests by analyzing users’ features, items’ features, and users’ ratings, as well as users’ time context. Moreover, we use Tensorflow distributed open source framework to implement the proposed time-aware CNN-based recommendation algorithm which can effectively solve the problems of large data volume, large model, and slow speed of recommender system. The experimental results on the MovieLens-1m real dataset show that the proposed TC-PR can effectively solve the cold-start problem and greatly improve the speed of data processing and the accuracy of recommendation.


2019 ◽  
Vol 26 (11) ◽  
pp. 1181-1188 ◽  
Author(s):  
Isabel Segura-Bedmar ◽  
Pablo Raez

Abstract Objective The goal of the 2018 n2c2 shared task on cohort selection for clinical trials (track 1) is to identify which patients meet the selection criteria for clinical trials. Cohort selection is a particularly demanding task to which natural language processing and deep learning can make a valuable contribution. Our goal is to evaluate several deep learning architectures to deal with this task. Materials and Methods Cohort selection can be formulated as a multilabeling problem whose goal is to determine which criteria are met for each patient record. We explore several deep learning architectures such as a simple convolutional neural network (CNN), a deep CNN, a recurrent neural network (RNN), and CNN-RNN hybrid architecture. Although our architectures are similar to those proposed in existing deep learning systems for text classification, our research also studies the impact of using a fully connected feedforward layer on the performance of these architectures. Results The RNN and hybrid models provide the best results, though without statistical significance. The use of the fully connected feedforward layer improves the results for all the architectures, except for the hybrid architecture. Conclusions Despite the limited size of the dataset, deep learning methods show promising results in learning useful features for the task of cohort selection. Therefore, they can be used as a previous filter for cohort selection for any clinical trial with a minimum of human intervention, thus reducing the cost and time of clinical trials significantly.


2021 ◽  
Vol 11 (19) ◽  
pp. 9210
Author(s):  
Nguyet Quang Do ◽  
Ali Selamat ◽  
Ondrej Krejcar ◽  
Takeru Yokoi ◽  
Hamido Fujita

Phishing detection with high-performance accuracy and low computational complexity has always been a topic of great interest. New technologies have been developed to improve the phishing detection rate and reduce computational constraints in recent years. However, one solution is insufficient to address all problems caused by attackers in cyberspace. Therefore, the primary objective of this paper is to analyze the performance of various deep learning algorithms in detecting phishing activities. This analysis will help organizations or individuals select and adopt the proper solution according to their technological needs and specific applications’ requirements to fight against phishing attacks. In this regard, an empirical study was conducted using four different deep learning algorithms, including deep neural network (DNN), convolutional neural network (CNN), Long Short-Term Memory (LSTM), and gated recurrent unit (GRU). To analyze the behaviors of these deep learning architectures, extensive experiments were carried out to examine the impact of parameter tuning on the performance accuracy of the deep learning models. In addition, various performance metrics were measured to evaluate the effectiveness and feasibility of DL models in detecting phishing activities. The results obtained from the experiments showed that no single DL algorithm achieved the best measures across all performance metrics. The empirical findings from this paper also manifest several issues and suggest future research directions related to deep learning in the phishing detection domain.


2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Malte Seemann ◽  
Lennart Bargsten ◽  
Alexander Schlaefer

AbstractDeep learning methods produce promising results when applied to a wide range of medical imaging tasks, including segmentation of artery lumen in computed tomography angiography (CTA) data. However, to perform sufficiently, neural networks have to be trained on large amounts of high quality annotated data. In the realm of medical imaging, annotations are not only quite scarce but also often not entirely reliable. To tackle both challenges, we developed a two-step approach for generating realistic synthetic CTA data for the purpose of data augmentation. In the first step moderately realistic images are generated in a purely numerical fashion. In the second step these images are improved by applying neural domain adaptation. We evaluated the impact of synthetic data on lumen segmentation via convolutional neural networks (CNNs) by comparing resulting performances. Improvements of up to 5% in terms of Dice coefficient and 20% for Hausdorff distance represent a proof of concept that the proposed augmentation procedure can be used to enhance deep learning-based segmentation for artery lumen in CTA images.


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


Sign in / Sign up

Export Citation Format

Share Document