scholarly journals An Accurate Sparse Recovery Algorithm for Range-Angle Localization of Targets via Double-Pulse FDA-MIMO Radar

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qi Liu ◽  
Xianpeng Wang ◽  
Liangtian Wan ◽  
Mengxing Huang ◽  
Lu Sun

In this paper, a sparse recovery algorithm based on a double-pulse FDA-MIMO radar is proposed to jointly extract the angle and range estimates of targets. Firstly, the angle estimates of targets are calculated by transmitting a pulse with a zero frequency increment and employing the improved l 1 -SVD method. Subsequently, the range estimates of targets are achieved by utilizing a pulse with a nonzero frequency increment. Specifically, after obtaining the angle estimates of targets, we perform dimensionality reduction processing on the overcomplete dictionary to achieve the automatically paired range and angle in range estimation. Grid partition will bring a heavy computational burden. Therefore, we adopt an iterative grid refinement method to alleviate the above limitation on parameter estimation and propose a new iteration criterion to improve the error between real parameters and their estimates to get a trade-off between the high-precision grid and the atomic correlation. Finally, the proposed algorithm is evaluated by providing the results of the Cramér-Rao lower bound (CRLB) and numerical root mean square error (RMSE).

2014 ◽  
Vol 933 ◽  
pp. 450-455
Author(s):  
Hui Yu ◽  
Guang Hua Lu ◽  
Hai Long Zhang

The high resolution and better recovery performance with distributed MIMO radar would be significantly degraded when the target moves at an unknown velocity. In this paper, we propose an adaptive sparse recovery algorithm for moving target imaging to estimate the velocity and image jointly with high computation efficiency. With an iteration mechanism, the proposed method updates the image and estimates the velocity alternately by sequentially minimizing the norm and the recovery error. Numerical simulations are carried out to demonstrate that the proposed algorithm can retrieve high-resolution image and accurate velocity simultaneously even in low SNR.


2021 ◽  
Author(s):  
Shah Mahdi Hasan ◽  
Kaushik Mahata ◽  
Md Mashud Hyder

Grant-Free Non Orthogonal Multiple Access (NOMA) offers promising solutions to realize uplink (UL) massive Machine Type Communication (mMTC) using limited spectrum resources, while reducing signalling overhead. Because of the sparse, sporadic activities exhibited by the user equipments (UE), the active user detection (AUD) problem is often formulated as a compressive sensing problem. In line of that, greedy sparse recovery algorithms are spearheading the development of compressed sensing based multi-user detectors (CS-MUD). However, for a given number of resources, the performance of CS-MUD algorithms are fundamentally limited at higher overloading of NOMA. To circumvent this issue, in this work, we propose a two-stage hierarchical multi-user detection framework, where the UEs are randomly assigned to some pre-defined clusters. The active UEs split their data transmission frame into two phases. In the first phase an UE uses the sinusoidal spreading sequence (SS) of its cluster. In the second phase the UE uses its own unique random SS. At phase 1 of detection, the active clusters are detected, and a reduced sensing matrix is constructed. This matrix is used in Phase 2 to recover the active UE indices using some sparse recovery algorithm. Numerical investigations validate the efficacy of the proposed algorithm in highly overloaded scenarios.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 834
Author(s):  
Jin ◽  
Yang ◽  
Li ◽  
Liu

Compressed sensing theory is widely used in the field of fault signal diagnosis and image processing. Sparse recovery is one of the core concepts of this theory. In this paper, we proposed a sparse recovery algorithm using a smoothed l0 norm and a randomized coordinate descent (RCD), then applied it to sparse signal recovery and image denoising. We adopted a new strategy to express the (P0) problem approximately and put forward a sparse recovery algorithm using RCD. In the computer simulation experiments, we compared the performance of this algorithm to other typical methods. The results show that our algorithm possesses higher precision in sparse signal recovery. Moreover, it achieves higher signal to noise ratio (SNR) and faster convergence speed in image denoising.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1227 ◽  
Author(s):  
Dingfei Jin ◽  
Yue Yang ◽  
Tao Ge ◽  
Daole Wu

In this paper, we propose a fast sparse recovery algorithm based on the approximate l0 norm (FAL0), which is helpful in improving the practicability of the compressed sensing theory. We adopt a simple function that is continuous and differentiable to approximate the l0 norm. With the aim of minimizing the l0 norm, we derive a sparse recovery algorithm using the modified Newton method. In addition, we neglect the zero elements in the process of computing, which greatly reduces the amount of computation. In a computer simulation experiment, we test the image denoising and signal recovery performance of the different sparse recovery algorithms. The results show that the convergence rate of this method is faster, and it achieves nearly the same accuracy as other algorithms, improving the signal recovery efficiency under the same conditions.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 178710-178725 ◽  
Author(s):  
Bokun Tian ◽  
Xiaoling Zhang ◽  
Shunjun Wei ◽  
Jing Ming ◽  
Jun Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document