scholarly journals Lithium Sulfide as Cathode Materials for Lithium-Ion Batteries: Advances and Challenges

2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Luoting Zhou ◽  
Wenkui Zhang ◽  
Yangfeng Wang ◽  
Sheng Liang ◽  
Yongping Gan ◽  
...  

Due to the ever-growing demand for high-density energy storage devices, lithium-ion batteries with a high-capacity cathode and anode are thought to be the next-generation batteries for their high energy density. Lithium sulfide (Li2S) is considered the promising cathode material for its high theoretical capacity, high melting point, affordable volume expansion, and lithium composition. This review summarizes the activation and lithium storage mechanism of Li2S cathodes. The design strategies in improving the electrochemical performance are highlighted. The application of the Li2S cathode in full cells of lithium-ion batteries is discussed. The challenges and new directions in commercial applications of Li2S cathodes are also pointed out.

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Wang ◽  
Junwei Han ◽  
Debin Kong ◽  
Ying Tao ◽  
Quan-Hong Yang

Abstract Lithium-ion batteries (LIBs), which are high-energy-density and low-safety-risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global energy storage market. With the aim of achieving high energy density and fast-charging performance, the exploitation of simple and low-cost approaches for the production of high capacity, high density, high mass loading, and kinetically ion-accessible electrodes that maximize charge storage and transport in LIBs, is a critical need. Toward the construction of high-performance electrodes, carbons are promisingly used in the enhanced roles of active materials, electrochemical reaction frameworks for high-capacity noncarbons, and lightweight current collectors. Here, we review recent advances in the carbon engineering of electrodes for excellent electrochemical performance and structural stability, which is enabled by assembled carbon architectures that guarantee sufficient charge delivery and volume fluctuation buffering inside the electrode during cycling. Some specific feasible assembly methods, synergism between structural design components of carbon assemblies, and electrochemical performance enhancement are highlighted. The precise design of carbon cages by the assembly of graphene units is potentially useful for the controlled preparation of high-capacity carbon-caged noncarbon anodes with volumetric capacities over 2100 mAh cm−3. Finally, insights are given on the prospects and challenges for designing carbon architectures for practical LIBs that simultaneously provide high energy densities (both gravimetric and volumetric) and high rate performance.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jinghui Ren ◽  
Zhenyu Wang ◽  
Peng Xu ◽  
Cong Wang ◽  
Fei Gao ◽  
...  

AbstractHigh-energy–density lithium-ion batteries (LIBs) that can be safely fast-charged are desirable for electric vehicles. However, sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety issues and low energy density. Here we hypothesize that a cobalt vanadate oxide, Co2VO4, can be attractive anode material for fast-charging LIBs due to its high capacity (~ 1000 mAh g−1) and safe lithiation potential (~ 0.65 V vs. Li+/Li). The Li+ diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15 × 10–10 cm2 s−1, proving Co2VO4 a promising anode in fast-charging LIBs. A hexagonal porous Co2VO4 nanodisk (PCVO ND) structure is designed accordingly, featuring a high specific surface area of 74.57 m2 g−1 and numerous pores with a pore size of 14 nm. This unique structure succeeds in enhancing Li+ and electron transfer, leading to superior fast-charging performance than current commercial anodes. As a result, the PCVO ND shows a high initial reversible capacity of 911.0 mAh g−1 at 0.4 C, excellent fast-charging capacity (344.3 mAh g−1 at 10 C for 1000 cycles), outstanding long-term cycling stability (only 0.024% capacity loss per cycle at 10 C for 1000 cycles), confirming the commercial feasibility of PCVO ND in fast-charging LIBs.


2017 ◽  
Vol 727 ◽  
pp. 718-725 ◽  
Author(s):  
Xu Yan Liu ◽  
Yan Lin Han ◽  
Qiang Li ◽  
Deng Pan

Nanostructured SnO2 is an attractive anode material for high-energy-density lithium-ion batteries because of the fourfold higher theoretical charge capacity than commercially used graphite. However, the poor capacity retention at high rates and long-term cycling have intrinsically limited applications of nanostructured SnO2 anodes due to large polarization and ~300% volume change upon lithium insertion/extraction. Here we report the design of SnO2 nanoparticles, which are synthesized by sol-gel method, with an aim at overcome the above problems for the high-performance reversible lithium storage. The results showed that the mean sizes of SnO2 particles treated with 6 wt.% ammonia were less than 30 nm, which can store charge with a capacity density as high as ~1888 mAh/g. Even when the discharge rate was increased to 0.5 C, it still retained ~1017 mAh/g.


2020 ◽  
Vol 8 ◽  
Author(s):  
Li-Feng Zhou ◽  
Dongrun Yang ◽  
Tao Du ◽  
He Gong ◽  
Wen-Bin Luo

With the development of electric vehicles involving lithium ion batteries as energy storage devices, the demand for lithium ion batteries in the whole industry is increasing, which is bound to lead to a large number of lithium ion batteries in the problem of waste, recycling and reuse. If not handled properly, it will certainly have a negative impact on the environment and resources. Current commercial lithium ion batteries mainly contain transition metal oxides or phosphates, aluminum, copper, graphite, organic electrolytes containing harmful lithium salts, and other chemicals. Therefore, the recycling and reuse of spent lithium ion batteries has been paid more and more attention by many researchers. However, due to the high energy density, high safety and low price of lithium ion batteries have great differences and diversity, the recycling of waste lithium ion batteries has great difficulties. This paper reviews the latest development of the recovery technology of waste lithium ion batteries, including the development of recovery process and products. In addition, the challenges and future economic and application prospects are described.


Author(s):  
gaolong zhu ◽  
yuyu he ◽  
yunlong deng ◽  
ming wang ◽  
xiaoyan liu ◽  
...  

Abstract High energy density lithium-ion batteries are urgently needed due to the rapid growth demands of electric vehicles, electronic devices, and grid energy storage devices. There is still significant opportunity to improve the energy density of existing state-of-the-art lithium-ion batteries by optimizing the separator thickness, which is usually ignored. Here, the dependence of battery gravimetric and volumetric energy densities on separator thickness has been quantitatively discussed in different type Li-ion batteries by calculations combined with experiments. With a decrease in separator thickness, the volumetric energy density is greatly improved. Meanwhile, the gravimetric energy densities are significantly improved as the electrolyte soaking in the separator is reduced. The gravimetric and volumetric energy densities of graphite (Gr) | NCM523 cells enable to increase 11.5% and 29.7%, respectively, by reducing the thickness of separator from 25 μm to 7 μm. Furthermore, the Li | S battery exhibits an extremely high energy density of 664.2 Wh Kg-1 when the thickness of the separator is reduced to 1 μm. This work sheds fresh light on the rational design of high energy density lithium-ion batteries.


2021 ◽  
Vol 34 ◽  
pp. 716-734
Author(s):  
Shuoqing Zhao ◽  
Ziqi Guo ◽  
Kang Yan ◽  
Shuwei Wan ◽  
Fengrong He ◽  
...  

Author(s):  
Qianliang Zhang ◽  
Baojuan Xi ◽  
Shenglin Xiong ◽  
Yitai Qian

SiO based materials have attracted attention as a promising anode for practical application in lithium−ion batteries (LIBs) with high energy density. However, severe volume variation and poor conductivity hinder the...


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Haisheng Han ◽  
Yanli Song ◽  
Yongguang Zhang ◽  
Gulnur Kalimuldina ◽  
Zhumabay Bakenov

AbstractIn recent years, the development of lithium-ion batteries (LIBs) with high energy density has become one of the important research directions to fulfill the needs of electric vehicles and smart grid technologies. Nowadays, traditional LIBs have reached their limits in terms of capacity, cycle life, and stability, necessitating their further improvement and development of alternative materials with remarkably enhanced properties. A nitrogen-containing carbon nanotube (N-CNT) host for bimetallic sulfide (NiCo2S4) is proposed in this study as an anode with attractive electrochemical performance for LIBs. The prepared NiCo2S4/N-CNT nanocomposite exhibited improved cycling stability, rate performance, and an excellent reversible capacity of 623.0 mAh g–1 after 100 cycles at 0.1 A g–1 and maintained a high capacity and cycling stability at 0.5 A g–1. The excellent electrochemical performance of the composite can be attributed to the unique porous structure, which can effectively enhance the diffusivity of Li ions while mitigating the volume expansion during the charge–discharge processes.


Sign in / Sign up

Export Citation Format

Share Document