scholarly journals Effect of Massa Medicata Fermentata on the Gut Microbiota of Dyspepsia Mice Based on 16S rRNA Technique

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiaorui Zhang ◽  
Hongling Zhang ◽  
Qinwan Huang ◽  
Jilin Sun ◽  
Renchuan Yao ◽  
...  

Massa Medicata Fermentata (MMF) is a traditional Chinese medicine (TCM) for treating indigestion and its related disorders. This study analyzes the effect of MMF on intestinal microorganisms in dyspepsia mice based on 16S rRNA technology. We take a dyspepsia model caused by a high-protein, high-calorie, high-fat diet. The 60 specific-pathogen free Kunming (SPF KM) mice were randomly divided into a model group n=12, an MMF group (LSQ group, n=12), a Jianweixiaoshi group (JWXS group, n=12), a domperidone group (DP group, n=12), and a blank group n=12. On the seventh day of administration, mice were fasted and deprived of water. After 24 h, take the second feces of stress defecation in mice under strict aseptic conditions and quickly transfer them to a sterile cryotube. This study comprehensively evaluates the α-diversity, β-diversity, flora abundance and composition of each group of miceʼs intestinal microorganisms, and their correlation with functional dyspepsia based on the 16S rRNA gene sequencing technology. After modeling, some dyspepsia reactions, proximal gastric relaxation reduction, and intestinal microflora changes were noted. Dyspepsia mice showed dyspepsia reactions and proximal gastric relaxation reduction, characterized by a significant decrease of contents of gastrin P<0.01 and cholinesterase P<0.01. MMF can improve dyspepsia symptoms and promote proximal gastric relaxation. Significant intestinal flora disorders were found in dyspepsia mice, including downregulation of Bacteroidetes, Lactobacillus, and Prevotellaceae and upregulation of Proteobacteria, Verrucomicrobia, Epsilonbacteraeota, Firmicutes, Lachnospiraceae NK4A136 group, and Lachnospiraceae. MMF could alleviate intestinal microflora disturbance, and the regulation effect of MMF on Bacteroidetes, Verrucomicrobia, and Epsilonbacteraeota was more reliable than that of Jianweixiaoshi tables and domperidone. The intestinal microflora may be correlated with the promoted digestion of MMF.

2020 ◽  
Author(s):  
Xiaorui Zhang ◽  
Hongling Zhang ◽  
Qinwan Huang ◽  
Jilin Sun ◽  
Renchuan Yao ◽  
...  

Abstract Background:Massa MedicataFermentata (MMF), also known as Shenqu and Liuqu, is a traditional Chinese medicine (TCM) for treating indigestion and its related disorders.This study analyzes the effect of MMF on intestinal microorganisms in dyspepsia mice based on 16S rRNA technology. Methods: We adopt a dyspepsia model of spleen deficiency, which is caused by a high-protein, high-calorie, high-fat diet. The 60 specific-pathogen free Kunming (SPF KM) mice were randomly divided into a model group (administered saline 50 ml/kg/day, n=12), an MMF group (LSQ group, administered 4.8 g/kg/day, n=12), a Jianweixiaoshi group (JWXS group, administered 2.88 g/kg/day, n=12), a Domperidone group (DP group, administered 0.006 g/kg/day, n=12), and a blank group (administered saline 50 ml/kg/day, n=12). On the seventh day of administration, the mice were fasted and deprived of water. After 24 h, take the second feces of stress defecation in mice under strict aseptic conditions and quickly transfers them to a sterile cryotube. This study comprehensively evaluates the α-diversity, β-diversity, flora abundance and composition of each group of mice's intestinal microorganisms, and their correlation with functional dyspepsia on the base of 16S rRNA gene sequencing technology. Results: After modeling, there were some dyspepsia reactions, proximal gastric relaxation reduction, and changes in intestinal microflora. Dyspepsia mice appeared dyspepsia reactions and proximal gastric relaxation reduction, characterized by a significant decrease of contents of gastrin (P <0.01) and cholinesterase (P <0.01). MMF can improve dyspepsia symptoms and promote proximal gastric relaxation. Significant intestinal flora disorders were observed in dyspepsia mice, including down-regulation of Bacteroidetes, Lactobacillus, and Prevotellaceae, up-regulation of Proteobacteria, Verrucomicrobia, Epsilonbacteraeota, Firmicutes, Lachnospiraceae NK4A136 group, and Lachnospiraceae. MMF could alleviate intestinal microflora disturbance, and the regulation effect of MMF on Bacteroidetes, Verrucomicrobia, and Epsilonbacteraeota was more reliable than that of Jianweixiaoshi tables and Domperidone. The intestinal microflora may be correlated with the promote digestion of MMF.Conclusions: Overall this research explained the potential pharmacological mechanism of MMF and provided targets and direction for further research on Chinese fermentation medicine. Such research-based on high-throughput data sets can be used to interpret TCM theories and provide valuable research models and clinical medication references for TCM researchers and doctors.


2020 ◽  
Vol 26 (6) ◽  
pp. 614-626
Author(s):  
Wen-Jia Wang ◽  
You-Lian Zhou ◽  
Jie He ◽  
Zhi-Qiang Feng ◽  
Long Zhang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yue Hua ◽  
Sheng Guo ◽  
Hong Xie ◽  
Yue Zhu ◽  
Hui Yan ◽  
...  

The seed of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou (ZSS) is often used as a traditional Chinese medicine for insomnia due to its sedative and hypnotic effects, but the mechanism underlying this effect has not been thoroughly elucidated. In this study, an insomnia model induced by intraperitoneal injection of DL-4-chlorophenylalanine suspension in Sprague-Dawley rats was adopted to investigate the therapeutic effect of ZSS extract. Metabolomics analyses of plasma and urine as well as 16S rRNA gene sequencing of the intestinal flora were performed. The relationships between the plasma and urine metabolites and the intestinal flora in insomnia rats were also analyzed. The results showed that changes in plasma and urine metabolites caused by insomnia were reversed after administration of ZSS, and these changes were mainly related to amino acid metabolism, especially phenylalanine metabolism. The results of 16S rRNA gene sequencing and short-chain fatty acid determination showed that the ZSS extract could reverse the imbalance of intestinal flora caused by insomnia and increase the contents of SCFAs in feces. All of these improvements are mainly related to the regulation of inflammation. Therefore, it is concluded that insomnia, which alters metabolic profiles and the intestinal flora, could be alleviated effectively by ZSS extract.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Tianyu Chi ◽  
Quchuan Zhao ◽  
Peili Wang

Background. The incidence of small intestinal injury caused by low-dose aspirin (LDA) is high, but the pathogenesis and intervention measures of it have not been elucidated. Recent studies have found gut microbiota to be closely associated with onset and development of NSAID-induced intestinal injury. However, studies of the changes in the gut microbiota of rats with LDA-related intestinal injury have been lacking recently. In this study, we investigated fecal 16S rRNA gene sequencing analysis of changes in the gut microbiota of rats with LDA-related intestinal injury. Methods. Sprague-Dawley (SD) rat models of small intestinal injury were established by intragastric administration of LDA. The small intestinal tissues and the fecal samples were harvested. The fecal samples were then analyzed using high-throughput sequencing of 16S rRNA V3-V4 amplicons. The gut microbiota composition and diversity were analyzed and compared using principal coordinate analysis (PCoA), nonmetric multidimensional scaling (NMDS) analysis, the unweighted pair-group method with arithmetic mean (UPGMA) clustering analysis, multivariate statistical analysis (ANOSIM, MetaStats, and LEfSe), and spatial statistics. Results. The LDA rat model was successfully established. Decreased Firmicutes and increased Bacteroidetes abundances in rats with LDA-induced small intestinal injury were revealed. MetaStats analysis between the before administration of LDA (CG) and after administration of LDA (APC) groups showed that the intestinal floras exhibiting significant differences ( P < 0.05 , q < 0.1 ) were Firmicutes, Bacteroides, Cyanobacteria, Melainabacteria, Coriobacteriia, Bacteroidia, Bacteroidales, Eubacteriaceae, and Streptococcaceae. In addition, the bacterial taxa showing significant differences between the control (NS) and APC groups were Firmicutes, Bacteroides, Verrucomicrobiaceae and Peptococcaceae. Conclusions. The alterations in the gut microbiota composition and diversity of rats with LDA-related intestinal injury were found in the present study. The change of gut microbiota in LDA-related intestinal injury will lay the foundation for further research on the function and signaling pathways of the intestinal flora and promote the use of intestinal flora as drug targets to treat LDA-induced small intestinal injury.


2019 ◽  
Vol 13 (1) ◽  
pp. 90-101
Author(s):  
Sanju Kumari ◽  
Utkarshini Sharma ◽  
Rohit Krishna ◽  
Kanak Sinha ◽  
Santosh Kumar

Background: Cellulolysis is of considerable economic importance in laundry detergents, textile and pulp and paper industries and in fermentation of biomass into biofuels. Objective: The aim was to screen cellulase producing actinobacteria from the fruit orchard because of its requirement in several chemical reactions. Methods: Strains of actinobacteria were isolated on Sabouraud’s agar medium. Similarities in cultural and biochemical characterization by growing the strains on ISP medium and dissimilarities among them perpetuated to recognise nine groups of actinobacteria. Cellulase activity was measured by the diameter of clear zone around colonies on CMC agar and the amount of reducing sugar liberated from carboxymethyl cellulose in the supernatant of the CMC broth. Further, 16S rRNA gene sequencing and molecular characterization were placed before NCBI for obtaining recognition with accession numbers. Results: Prominent clear zones on spraying Congo Red were found around the cultures of strains of three groups SK703, SK706, SK708 on CMC agar plates. The enzyme assay for carboxymethylcellulase displayed extra cellulase activity in broth: 0.14, 0.82 and 0.66 &#181;mol mL-1 min-1, respectively at optimum conditions of 35°C, pH 7.3 and 96 h of incubation. However, the specific cellulase activities per 1 mg of protein did not differ that way. It was 1.55, 1.71 and 1.83 μmol mL-1 min-1. The growing mycelia possessed short compact chains of 10-20 conidia on aerial branches. These morphological and biochemical characteristics, followed by their verification by Bergey’s Manual, categorically allowed the strains to be placed under actinobacteria. Further, 16S rRNA gene sequencing, molecular characterization and their evolutionary relationship through phylogenetics also confirmed the putative cellulase producing isolates of SK706 and SK708 subgroups to be the strains of Streptomyces. These strains on getting NCBI recognition were christened as Streptomyces glaucescens strain SK91L (KF527284) and Streptomyces rochei strain SK78L (KF515951), respectively. Conclusion: Conclusive evidence on the basis of different parameters established the presence of cellulase producing actinobacteria in the litchi orchard which can convert cellulose into fermentable sugar.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Janis R. Bedarf ◽  
Naiara Beraza ◽  
Hassan Khazneh ◽  
Ezgi Özkurt ◽  
David Baker ◽  
...  

Abstract Background Recent studies suggested the existence of (poly-)microbial infections in human brains. These have been described either as putative pathogens linked to the neuro-inflammatory changes seen in Parkinson’s disease (PD) and Alzheimer’s disease (AD) or as a “brain microbiome” in the context of healthy patients’ brain samples. Methods Using 16S rRNA gene sequencing, we tested the hypothesis that there is a bacterial brain microbiome. We evaluated brain samples from healthy human subjects and individuals suffering from PD (olfactory bulb and pre-frontal cortex), as well as murine brains. In line with state-of-the-art recommendations, we included several negative and positive controls in our analysis and estimated total bacterial biomass by 16S rRNA gene qPCR. Results Amplicon sequencing did detect bacterial signals in both human and murine samples, but estimated bacterial biomass was extremely low in all samples. Stringent reanalyses implied bacterial signals being explained by a combination of exogenous DNA contamination (54.8%) and false positive amplification of host DNA (34.2%, off-target amplicons). Several seemingly brain-enriched microbes in our dataset turned out to be false-positive signals upon closer examination. We identified off-target amplification as a major confounding factor in low-bacterial/high-host-DNA scenarios. These amplified human or mouse DNA sequences were clustered and falsely assigned to bacterial taxa in the majority of tested amplicon sequencing pipelines. Off-target amplicons seemed to be related to the tissue’s sterility and could also be found in independent brain 16S rRNA gene sequences. Conclusions Taxonomic signals obtained from (extremely) low biomass samples by 16S rRNA gene sequencing must be scrutinized closely to exclude the possibility of off-target amplifications, amplicons that can only appear enriched in biological samples, but are sometimes assigned to bacterial taxa. Sequences must be explicitly matched against any possible background genomes present in large quantities (i.e., the host genome). Using close scrutiny in our approach, we find no evidence supporting the hypothetical presence of either a brain microbiome or a bacterial infection in PD brains.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Musa Saheed Ibrahim ◽  
Beckley Ikhajiagbe

Abstract Background Rice forms a significant portion of food consumed in most household worldwide. Rice production has been hampered by soil factors such as ferruginousity which has limited phosphorus availability; an important mineral component for the growth and yield of rice. The presence of phosphate-solubilizing bacteria (PSB) in soils has been reported to enhance phosphate availability. In view of this, the present study employed three bacteria species (BCAC2, EMBF2 and BCAF1) that were previously isolated and proved P solubilization capacities as inocula to investigate the growth response of rice germinants in an in vitro setup. The bacteria isolates were first identified using 16S rRNA gene sequencing and then applied as inoculum. The inolula were prepared in three concentrations (10, 7.5 and 5.0 ml) following McFarland standard. Viable rice (var. FARO 44) seeds were sown in petri dishes and then inoculated with the three inocula at the different concentrations. The setup was studied for 28 days. Results 16S rRNA gene sequencing identified the isolates as: isolate BCAC2= Bacillus cereus strain GGBSU-1, isolate BCAF1= Proteus mirabilis strain TL14-1 and isolate EMBF2= Klebsiella variicola strain AUH-KAM-9. Significant improvement in rice germination, morphology, physiology and biomass parameters in the bacteria-inoculated setups was observed compared to the control. Germination percentage after 4 days was 100 % in the inoculated rice germinants compared to 65% in the control (NiS). Similarly, inoculation with the test isolates enhanced water-use efficiency by over 40%. The rice seedlings inoculated with Bacillus cereus strain GGBSU-1 (BiS) showed no signs of chlorosis and necrosis throughout the study period as against those inoculated with Proteus mirabilis strain TL14-1 (PiS) and Klebsiella variicola strain AUH-KAM-9 (KiS). Significant increase in chlorophyll-a, chlorophyll-b and alpha amylase was observed in the rice seedlings inoculated with BiS as against the NiS. Conclusion Inoculating rice seeds with Bacillus cereus strain GGBSU-1, Proteus mirabilis strain TL14-1 and Klebsiella variicola strain AUH-KAM-9 in an in vitro media significantly improved growth parameters of the test plant. Bacillus cereus strain GGBSU-1 showed higher efficiency due to a more improved growth properties observed.


Sign in / Sign up

Export Citation Format

Share Document