scholarly journals Influence of 3D Printed Topological Structure on Lightweight Mullite Load Bearing Board in Thermal Environment

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yiran Man ◽  
Xudong Luo ◽  
Zhipeng Xie ◽  
Dianli Qu

In order to achieve the purpose of resource and energy saving in the process of producing ceramics products, the hollow lightweight load bearing board in thermal environment with topological structures was made by 3D printing. In this study, the load bearing board manufactured with different topological structures such as vertical grid, oblique square grid, and honeycomb grid was printed by direct ink writing technology using the same raw material of kaolin clay and α-Al2O3 powder. The three kinds of samples were sintered at 1450°C × 3 h. The effect of printed structures on mechanical property of load bearing board samples was investigated. Moreover, the finite element simulation was used to study the stress distribution of the load bearing board. Comparing with results obtained by three kinds of samples, honeycomb grid supported samples proved to be the most appropriate structure in various directions comprehensively.

i-Perception ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 204166951880971 ◽  
Author(s):  
Fumio Kanbe

A previous study by the author found that discrimination latencies for figure pairs with the same topological structure (isomorphic pairs) were longer than for pairs with different topological structures (nonisomorphic pairs). These results suggest that topological sensitivity occurs during figure recognition. However, sameness was judged in terms of both shape and orientation. Using this criterion, faster discrimination of nonisomorphic pairs may have arisen from the detection of differences in the corresponding locations of the paired figures, which is not a topological property. The current study examined whether topological sensitivity occurs even when identity judgments are based on the sameness of shapes, irrespective of their orientation, where the sameness of location is not ensured. The current results suggested the involvement of topological sensitivity, indicating that processing of structural properties (invariant features) of a figure may be prioritized over processing of superficial features, such as location, length, and angles, in figure recognition.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fujian Zhao ◽  
Xiongfa Ji ◽  
Yang Yan ◽  
Zhen Yang ◽  
Xiaofeng Chen ◽  
...  

The repair of bone defects in load-bearing positions still faces great challenges. Tantalum (Ta) has attempted to repair bone defects based on the excellent mechanical properties. However, the osseointegration of Ta needs to be improved due to the lack of osteoinduction. Herein, tantalum–gelatin–methacryloyl–bioactive glass (Ta–GelMA–BG) scaffolds were successfully fabricated by loading BG in 3D-printed Ta scaffolds through a chemical crosslinking method. The results showed that the composite scaffolds have the ability to promote cell adhesion and proliferation. The incorporation of BG resulted in a significant increase in apatite-forming and osteogenesis differentiation abilities. In vivo results indicated that the Ta–GelMA–BG scaffolds significantly enhanced the osteointegration at the early stage after implantation. Overall, the Ta–GelMA–BG scaffolds are a promising platform for the load bearing bone regeneration field.


2018 ◽  
Vol 5 (6) ◽  
pp. 1166-1175 ◽  
Author(s):  
Swetha Chandrasekaran ◽  
Bin Yao ◽  
Tianyu Liu ◽  
Wang Xiao ◽  
Yu Song ◽  
...  

Additive manufacturing is used to overcome inherent aerogel limitations. 3D printed aerogels simultaneously exhibit large capacitance and fast ion transport in millimeter-thick electrodes.


2019 ◽  
Vol 55 (15) ◽  
pp. 2190-2193 ◽  
Author(s):  
Adam J. Young ◽  
Rémy Guillet-Nicolas ◽  
Ellis S. Marshall ◽  
Freddy Kleitz ◽  
Alex J. Goodhand ◽  
...  

Highly catalytic 3D printed UiO-66 composite affords ease of use and clean-up for degradation of nerve agent simulant.


2020 ◽  
Vol 6 (47) ◽  
pp. eabc7429
Author(s):  
Rebecca Dylla-Spears ◽  
Timothy D. Yee ◽  
Koroush Sasan ◽  
Du T. Nguyen ◽  
Nikola A. Dudukovic ◽  
...  

We demonstrate an additive manufacturing approach to produce gradient refractive index glass optics. Using direct ink writing with an active inline micromixer, we three-dimensionally print multimaterial green bodies with compositional gradients, consisting primarily of silica nanoparticles and varying concentrations of titania as the index-modifying dopant. The green bodies are then consolidated into glass and polished, resulting in optics with tailored spatial profiles of the refractive index. We show that this approach can be used to achieve a variety of conventional and unconventional optical functions in a flat glass component with no surface curvature.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Serkan Atmaca ◽  
İdris Zorlutuna

We introduce the topological structure of fuzzy parametrized soft sets and fuzzy parametrized soft mappings. We define the notion of quasi-coincidence for fuzzy parametrized soft sets and investigated its basic properties. We study the closure, interior, base, continuity, and compactness and properties of these concepts in fuzzy parametrized soft topological spaces.


2021 ◽  
Author(s):  
Milan Zanussi

Model theory is the study of mathematical structures in terms of the logical relationships they define between their constituent objects. The logical relationships defined by these structures can be used to define topologies on the underlying sets. These topological structures will serve as a generalization of the notion of the Zariski topology from classical algebraic geometry. We will adapt properties and theorems from classical algebraic geometry to our topological structure setting. We will isolate a specific class of structures, called Zariski geometries, and demonstrate the main classification theorem of such structures. We will construct some Zariski structures where the classification fails by adding some noncommuting structure to a classical one. Finally we survey an application of these nonclassical Zariski structures to computation of formulas in quantum mechanics using a method of structural approximation developed by Boris Zilber.


Sign in / Sign up

Export Citation Format

Share Document