scholarly journals Completeness Theorem for Eigenparameter Dependent Dissipative Dirac Operator with General Transfer Conditions

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Kun Li ◽  
Maozhu Zhang ◽  
Jinming Cai ◽  
Zhaowen Zheng

This paper deals with a singular (Weyl’s limit circle case) non-self-adjoint (dissipative) Dirac operator with eigenparameter dependent boundary condition and finite general transfer conditions. Using the equivalence between Lax-Phillips scattering matrix and Sz.-Nagy-Foiaş characteristic function, the completeness of the eigenfunctions and associated functions of this dissipative operator is discussed.

1945 ◽  
Vol 12 (2) ◽  
pp. 255-273 ◽  
Author(s):  
Joseph J. Dennis ◽  
H. S. Wall

Author(s):  
Dmitri R. Yafaev ◽  
◽  
◽  

We consider symmetric second-order differential operators with real coefficients such that the corresponding differential equation is in the limit circle case at infinity. Our goal is to construct the theory of self-adjoint realizations of such operators by an analogy with the case of Jacobi operators. We introduce a new object, the quasiresolvent of the maximal operator, and use it to obtain a very explicit formula for the resolvents of all self-adjoint realizations. In particular, this yields a simple representation for the Cauchy-Stieltjes transforms of the spectral measures playing the role of the classical Nevanlinna formula in the theory of Jacobi operators.


1995 ◽  
Vol 125 (6) ◽  
pp. 1331-1348 ◽  
Author(s):  
Sobhy El-sayed Ibrahim

In this paper, the general ordinary quasidifferential expression M of nth order, with complex coefficients, and its formal adjoint M− are considered. It is shown in the case of two singular endpomts and when all solutions of the equation and the adjoint equation are in (the limit-circle case) that all well-posed extensions of the minimal operator T0(M) have resolvents which are Hilbert Schmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solvable operators have all of the standard essential spectra to be empty. These results extend those for the formally symmetric expression M studied in [1] and [14], and also extend those proved in [8] for one singular endpoint.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Keshav Raj Acharya

The aim of this paper is to show that, in the limit circle case, the defect index of a symmetric relation induced by canonical systems, is constant on ℂ. This provides an alternative proof of the De Branges theorem that the canonical systems with tr H1 imply the limit point case. To this end, we discuss the spectral theory of a linear relation induced by a canonical system.


Author(s):  
D. B. Hinton ◽  
J. K. Shaw

SynopsisThe authors continue their study of Titchmarch-Weyl matrix M(λ) functions for linear Hamiltonian systems. A representation for the M(λ) function is obtained in the case where the system is limit circle, or maximum deficiency index, type. The representation reduces, in a special case, to a parameterization for scalar m-coefficients due to C. T. Fulton. A proof that matrix M(λ) functions are meromorphic in the limit circle case is given.


Sign in / Sign up

Export Citation Format

Share Document