scholarly journals Therapeutic Role of Protein Tyrosine Phosphatase 1B in Parkinson’s Disease via Antineuroinflammation and Neuroprotection In Vitro and In Vivo

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Chien-Wei Feng ◽  
Nan-Fu Chen ◽  
Te-Fu Chan ◽  
Wu-Fu Chen

Parkinson’s disease (PD) is one of the most widespread neurodegenerative diseases. However, the currently available treatments could only relieve symptoms. Novel therapeutic targets are urgently needed. Several previous studies mentioned that protein tyrosine phosphatase 1B (PTP1B) acted as a negative regulator of the insulin signal pathway and played a significant role in the inflammation process. However, few studies have investigated the role of PTP1B in the central nervous system. Our study showed that suramin, an inhibitor of PTP1B, could improve neuronal damage. It could significantly attenuate the interferon-gamma-induced upregulation of proinflammatory cytokines, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). It enhanced M2 type microglia markers, such as arginase-1 and Ym-1 in BV2 murine microglial cells. PTP1B inhibition also reversed 6-hydroxydopamine- (6-OHDA-) induced downregulation of phospho-cAMP response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) in SH-SY5Y cells. Besides, we knocked down and overexpressed PTP1B in the SH-SY5Y cells to confirm its role in neuroprotection. We also verified the effect of suramin in the zebrafish PD model. Treatment with suramin could significantly reverse 6-OHDA-induced locomotor deficits and improved tyrosine hydroxylase (TH) via attenuating endoplasmic reticulum (ER) stress biomarkers. These results support that PTP1B could potentially regulate PD via antineuroinflammation and antiapoptotic pathways.

2021 ◽  
Vol 22 (13) ◽  
pp. 6646
Author(s):  
Marta del Campo ◽  
Rosalía Fernández-Calle ◽  
Marta Vicente-Rodríguez ◽  
Sara Martín Martínez ◽  
Esther Gramage ◽  
...  

Pleiotrophin (PTN) is a neurotrophic factor that regulates glial responses in animal models of different types of central nervous system (CNS) injuries. PTN is upregulated in the brain in different pathologies characterized by exacerbated neuroinflammation, including Parkinson’s disease. PTN is an endogenous inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ, which is abundantly expressed in the CNS. Using a specific inhibitor of RPTPβ/ζ (MY10), we aimed to assess whether the PTN/RPTPβ/ζ axis is involved in neuronal and glial injury induced by the toxin MPP+. Treatment with the RPTPβ/ζ inhibitor MY10 alone decreased the viability of both SH-SY5Y neuroblastoma cells and BV2 microglial cultures, suggesting that normal RPTPβ/ζ function is involved in neuronal and microglial viability. We observed that PTN partially decreased the cytotoxicity induced by MPP+ in SH-SY5Y cells underpinning the neuroprotective function of PTN. However, MY10 did not seem to modulate the SH-SY5Y cell loss induced by MPP+. Interestingly, we observed that media from SH-SY5Y cells treated with MPP+ and MY10 decreases microglial viability but may elicit a neuroprotective response of microglia by upregulating Ptn expression. The data suggest a neurotrophic role of microglia in response to neuronal injury through upregulation of Ptn levels.


2017 ◽  
Vol 131 (20) ◽  
pp. 2489-2501 ◽  
Author(s):  
Dawn Thompson ◽  
Nicola Morrice ◽  
Louise Grant ◽  
 Samantha Le Sommer ◽  
Emma K. Lees ◽  
...  

Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with type 1 or type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance, due to impaired insulin receptor (IR) signalling. Here, we demonstrate that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR prevents and reverses atherosclerotic plaque formation in an LDLR−/− mouse model of atherosclerosis. Acute (single dose) or chronic PTP1B inhibitor (trodusquemine) treatment of LDLR−/− mice decreased weight gain and adiposity, improved glucose homeostasis and attenuated atherosclerotic plaque formation. This was accompanied by a reduction in both, circulating total cholesterol and triglycerides, a decrease in aortic monocyte chemoattractant protein-1 (MCP-1) expression levels and hyperphosphorylation of aortic Akt/PKB and AMPKα. Our findings are the first to demonstrate that PTP1B inhibitors could be used in prevention and reversal of atherosclerosis development and reduction in CVD risk.


2015 ◽  
Vol 112 (4) ◽  
pp. 1202-1207 ◽  
Author(s):  
Pradeep K. Kurup ◽  
Jian Xu ◽  
Rita Alexandra Videira ◽  
Chimezie Ononenyi ◽  
Graça Baltazar ◽  
...  

Parkinson’s disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). The loss of SNc dopaminergic neurons affects the plasticity of striatal neurons and leads to significant motor and cognitive disabilities during the progression of the disease. PARK2 encodes for the E3 ubiquitin ligase parkin and is implicated in genetic and sporadic PD. Mutations in PARK2 are a major contributing factor in the early onset of autosomal-recessive juvenile parkinsonism (AR-JP), although the mechanisms by which a disruption in parkin function contributes to the pathophysiology of PD remain unclear. Here we demonstrate that parkin is an E3 ligase for STEP61 (striatal-enriched protein tyrosine phosphatase), a protein tyrosine phosphatase implicated in several neuropsychiatric disorders. In cellular models, parkin ubiquitinates STEP61 and thereby regulates its level through the proteasome system, whereas clinically relevant parkin mutants fail to do so. STEP61 protein levels are elevated on acute down-regulation of parkin or in PARK2 KO rat striatum. Relevant to PD, STEP61 accumulates in the striatum of human sporadic PD and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mice. The increase in STEP61 is associated with a decrease in the phosphorylation of its substrate ERK1/2 and the downstream target of ERK1/2, pCREB [phospho-CREB (cAMP response element-binding protein)]. These results indicate that STEP61 is a novel substrate of parkin, although further studies are necessary to determine whether elevated STEP61 levels directly contribute to the pathophysiology of PD.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Shayan Moazeni ◽  
Gregoire Ruffenach ◽  
Shervin Sarji ◽  
Christine Cunningham ◽  
Mylene Vaillancourt ◽  
...  

Background: Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling that leads to an increase in pulmonary arterial pressure resulting in right ventricle failure and death. PAH is driven by pulmonary artery smooth muscle cell (PASMC) proliferation and resistance to apoptosis. Protein Tyrosine Phosphatase 1B (PTP1B), a negative regulator for platelet-derived growth factor (PDGF) and BCL-2, has recently been implicated in PAH in humans. While PDGF and BCL-2 are increased in PAH patients, the pathway for regulating BCL-2 and PDGF is poorly understood. We aim to investigate if PTP1B has a role in proliferation and resistance to apoptosis in PAH in human PACMCs and in the Sugen/Hypoxia/Normoxia (Su/Hx/Nx) PH rat model. Method: Adult male Sprague-Dawley rats were treated with single intraperitoneal dose of SU5416 (20 mg/kg) and kept in Hx for 3 weeks followed by Nx for 2 weeks. Saline treated rats kept in Nx for 5 weeks served as control (n=4/group). RV catheterization was performed terminally for recording RV systolic pressure (RVSP). RV, LV, and interventricular septum (IVS) were isolated for Fulton index (FI, RV/IVS+LV). We analyzed gene expression in lungs via qPCR. Healthy hPASMCs were incubated with a PTP1B inhibitor (Ethyl-3,4-dephostatin) at IC50=0.58ug/ml for 24hrs under Nx conditions and cells were stained with Ki67 to assess proliferation. Results: Su/Hx/Nx rats had severe PH evidenced by a significantly elevated RVSP compared to control (88.97+/- 13.67 vs 28.47+/- 2.22 mmHg, p<0.05). PH rats also showed severely reduced RV function and increased RV hypertrophy (FI= 0.7+/- 0.063 vs 0.274 +/-0.01, p<0.05). PH lungs exhibited severe pulmonary vascular remodeling with excessive growth of the PASMCs. PTP1B was significantly decreased in PH lungs compared to controls (0.158+/-0.0647 vs 1+/-0.06, P<0.05). BCL-2 expression was significantly increased in PAH compared to control (2.01+/-0.162 vs 1 +/-0.1, P<0.01). Inhibition of PTP1B in cultured hPASMCs increased proliferation by ~2 fold as assessed by Ki67 positive cells (n=3). Conclusion: Severe angioproliferative PH in rats is associated with a downregulation of PTP1B and increased expression of BCL-2 and PASMC proliferation.


2018 ◽  
Vol 7 ◽  
pp. 132-146 ◽  
Author(s):  
Águeda González-Rodríguez ◽  
M. Pilar Valdecantos ◽  
Patricia Rada ◽  
Annalisa Addante ◽  
Inés Barahona ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255452
Author(s):  
Carolina Fernández ◽  
Natalia Torrealba ◽  
Francisco Altamirano ◽  
Valeria Garrido-Moreno ◽  
César Vásquez-Trincado ◽  
...  

Cardiac hypertrophy is the result of responses to various physiological or pathological stimuli. Recently, we showed that polycystin-1 participates in cardiomyocyte hypertrophy elicited by pressure overload and mechanical stress. Interestingly, polycystin-1 knockdown does not affect phenylephrine-induced cardiomyocyte hypertrophy, suggesting that the effects of polycystin-1 are stimulus-dependent. In this study, we aimed to identify the role of polycystin-1 in insulin-like growth factor-1 (IGF-1) signaling in cardiomyocytes. Polycystin-1 knockdown completely blunted IGF-1-induced cardiomyocyte hypertrophy. We then investigated the molecular mechanism underlying this result. We found that polycystin-1 silencing impaired the activation of the IGF-1 receptor, Akt, and ERK1/2 elicited by IGF-1. Remarkably, IGF-1-induced IGF-1 receptor, Akt, and ERK1/2 phosphorylations were restored when protein tyrosine phosphatase 1B was inhibited, suggesting that polycystin-1 knockdown deregulates this phosphatase in cardiomyocytes. Moreover, protein tyrosine phosphatase 1B inhibition also restored IGF-1-dependent cardiomyocyte hypertrophy in polycystin-1-deficient cells. Our findings provide the first evidence that polycystin-1 regulates IGF-1-induced cardiomyocyte hypertrophy through a mechanism involving protein tyrosine phosphatase 1B.


Sign in / Sign up

Export Citation Format

Share Document