photoreceptor neurons
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 28)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Penelope-Marie Clanor ◽  
Christine Buchholz ◽  
Jonathan E Hayes ◽  
Michael A Friedman ◽  
Andrew M White ◽  
...  

The cone-rod homeobox (CRX) protein is a critical K50 homeodomain transcription factor responsible for the differentiation and maintenance of photoreceptor neurons in the vertebrate retina. Mutant alleles in the human gene encoding CRX result in a variety of distinct blinding retinopathies, including retinitis pigmentosa, cone-rod dystrophy, and Leber congenital amaurosis. Despite the success of using in vitro biochemistry, animal models, and genomics approaches to study this clinically relevant transcription factor over the past 24 years since its initial characterization, there are no high-resolution structures in the published literature for the CRX protein. In this study, we use bioinformatic approaches and small-angle x-ray scattering (SAXS) structural analysis to further understand the biochemical complexity of the human CRX homeodomain (CRX-HD). We find that the CRX-HD is a compact, globular monomer in solution that can specifically bind functional cis-regulatory elements encoded upstream of retina specific genes. This study presents the first structural analysis of CRX, paving the way for a new approach to studying the biochemistry of this protein and its disease-causing mutant protein variants.



2021 ◽  
Author(s):  
Yiming Bai ◽  
Takashi Suzuki

Activity-dependent synaptic plasticity is crucial for responses to the environment. Although the plasticity mechanisms of presynaptic photoreceptor neurons in the Drosophila visual system have been well studied, postsynaptic modifications remain elusive. In addition, further studies on the adaption of the visual system to different light experiences at a circuitry scale are required. Using the modified transcriptional reporter of intracellular Ca2+ method, we describe a way to visualize circuitry changes according to different light experiences. We found enhanced postsynaptic neuronal activity responses in lamina monopolar neuron L2 after prolonged light treatment. Although L1 also has connections with photoreceptors, there were no enhanced activity responses in L1. We also report in this study that activity-dependent transcriptional downregulation of inhibitory histamine receptors (HRs) occurs in postsynaptic neuron L2, but not in L1, during continuous light conditions. We expressed exogenous HR proteins in L2 neurons and found that it attenuated the enhanced activity response caused by constant light exposure. These findings, together with the fact that histamine is the main inhibitory neurotransmitter released by photoreceptors in the Drosophila visual system, confirmed our hypothesis that the activity-dependent transcriptional downregulation of HRs is responsible for the constant light exposure-induced circuitry response changes in L2. The results successfully demonstrated the selective circuit change after synaptic remodeling evoked by long-term activation and provided in vivo evidence of circuitry plasticity upon long-term environmental stimulation.



PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009921
Author(s):  
Victor Girard ◽  
Florence Jollivet ◽  
Oskar Knittelfelder ◽  
Marion Celle ◽  
Jean-Noel Arsac ◽  
...  

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein (αSyn) aggregation and associated with abnormalities in lipid metabolism. The accumulation of lipids in cytoplasmic organelles called lipid droplets (LDs) was observed in cellular models of PD. To investigate the pathophysiological consequences of interactions between αSyn and proteins that regulate the homeostasis of LDs, we used a transgenic Drosophila model of PD, in which human αSyn is specifically expressed in photoreceptor neurons. We first found that overexpression of the LD-coating proteins Perilipin 1 or 2 (dPlin1/2), which limit the access of lipases to LDs, markedly increased triacylglyclerol (TG) loaded LDs in neurons. However, dPlin-induced-LDs in neurons are independent of lipid anabolic (diacylglycerol acyltransferase 1/midway, fatty acid transport protein/dFatp) and catabolic (brummer TG lipase) enzymes, indicating that alternative mechanisms regulate neuronal LD homeostasis. Interestingly, the accumulation of LDs induced by various LD proteins (dPlin1, dPlin2, CG7900 or KlarsichtLD-BD) was synergistically amplified by the co-expression of αSyn, which localized to LDs in both Drosophila photoreceptor neurons and in human neuroblastoma cells. Finally, the accumulation of LDs increased the resistance of αSyn to proteolytic digestion, a characteristic of αSyn aggregation in human neurons. We propose that αSyn cooperates with LD proteins to inhibit lipolysis and that binding of αSyn to LDs contributes to the pathogenic misfolding and aggregation of αSyn in neurons.



Author(s):  
Zeinab Abdelftah ◽  
Ahmed Ragab ◽  
Rasha E. Abo-Eleneen ◽  
Ahlam M. EL-Bakry

Abstract Background Light is the critical factor that affects the eye's morphology and auxiliary plans. The ecomorphological engineering of the cornea aids the physiological activities of the cornea during connections between photoreceptor neurons and light photons. Cornea was dissected free from the orbit from three avian species as ibis (Eudocium albus), duck (Anas platyrhynchus domesticus) and hawk (Buteo Buteo) and prepared for light and scanning electron microscopy and special stain for structural comparison related to function. Results The three investigated avian species are composed of three identical layers; epithelium, stroma, and endothelium, and two basement membranes; bowman's and Descemet’s membrane, separating two cellular layers, except for B. buteo which only has a Descemet’s membrane. The corneal layers in the investigated species display different affinity to stain with Periodic Acid Schiff stain. The external corneal surface secured by different normal epithelial cells ran from hexagonal to regular polygonal cells. Those epithelial cells are punctured by different diameter microholes and microplicae and microvilli of various length. Blebs are scarcely distributed over their surface. The present investigation utilized histological, histochemical and SEM examination. Conclusions The study presents a brief image/account of certain structures of cornea for three of Avian’s species. Data distinguish the anatomic structures of the owl's eye. The discussion explains the role of some functional anatomical structures all through the vision.



2021 ◽  
Author(s):  
Michael A Robichaux ◽  
Vy Nguyen ◽  
Fung Chan ◽  
Lavanya Kailasam ◽  
John H Wilson ◽  
...  

The P23H mutation in rhodopsin (Rho), the visual pigment protein in rod photoreceptor neurons, is the most common genetic cause of autosomal dominant retinitis pigmentosa (adRP), a retinal disease that causes blindness. Despite multiple studies in animal models, the subcellular details of the fate of misfolded mutant Rho in rod photoreceptors have not been completely defined. We generated a new mouse model of adRP, in which the P23H-Rho mutant allele is fused to Tag-RFP-T (P23HhRhoRFP). In heterozygotes, outer segments formed, and WT rhodopsin was properly localized there, but mutant P23H-Rho protein was specifically mislocalized in the inner segments of rods. Despite this cellular phenotype, the P23HhRhoRFP heterozygous mice exhibited only slowly progressing retinal degeneration; in ERG recordings, scotopic a-wave amplitudes were reduced by 24% and 26% at 30 days and 90 days respectively, and the corresponding scotopic b-waves by 18% and 24%. Outer nuclear layer thickness was still 80% of WT at 90 days, but at 364 days had declined to 40% of WT. Transmission electron microscopy revealed greatly expanded membrane lamellae in the inner segment, and by fluorescence imaging, we determined that the mislocalized P23HhRhoRFP was contained in greatly expanded endoplasmic reticulum (ER) membranes. TUNEL staining revealed a slow pace of cell death involving chromosomal endonucleolytic degradation. Quantification of mRNA for markers of ER stress and the unfolded protein response revealed little or no increases in levels of messages encoding the proteins BiP, CHOP, ATF6, XBP1, PERK, Eif2α and Derlin-1, but a decreased level of total Rhodopsin (mouse + human) mRNA levels. The decline in the rate of cell death after an initial burst suggests that P23HhRhoRFP mutant rods undergo an adaptative process that prolongs survival despite gross P23HhRhoRFP protein accumulation in the ER. Because of its slowly progressing nature, and easy visualization of the mutant protein, the P23H-Rho-RFP mouse may represent a useful tool for the future study of the pathology and treatment of P23H-Rho and adRP.



2021 ◽  
Author(s):  
Luis Alonso Hernandez-Nunez ◽  
Aravinthan Samuel

Animals use their olfactory systems to avoid predators, forage for food, and identify mates. Olfactory systems detect and distinguish odors by responding to the concentration, temporal dynamics, and identities of odorant molecules. Studying the temporal neural processing of odors carried in air has been difficult because of the inherent challenge in precisely controlling odorized airflows over time. Odorized airflows interact with surfaces and other air currents, leading to a complex transformation from the odorized airflow that is desired to the olfactory stimulus that is delivered. Here, we present a method that achieves precise and automated control of the amplitude, baseline, and temporal structure of olfactory stimuli. We use this technique to analyze the temporal processing of olfactory stimuli in the early olfactory circuits and navigational behavior of larval Drosophila. Precise odor control and calcium measurements in the axon terminal of an Olfactory Receptor Neuron (ORN-Or42b) revealed dynamic adaptation properties: as in vertebrate photoreceptor neurons, Or42b-ORNs display simultaneous gain-suppression and speedup of their neural response. Furthermore, we found that ORN sensitivity to changes in odor concentration decreases with odor background, but the sensitivity to odor contrast is invariant -- this causes odor-evoked ORN activity to follow the Weber-Fechner Law. Using precise olfactory stimulus control with freely-moving animals, we uncovered correlations between the temporal dynamics of larval navigation motor programs and the neural response dynamics of second-order olfactory neurons. The correspondence between neural and behavioral dynamics highlights the potential of precise odor temporal dynamics control in dissecting the sensorimotor circuits for olfactory behaviors.



2021 ◽  
Author(s):  
Juan Jauregui-Lozano ◽  
Alyssa N Easton ◽  
Spencer E Escobedo ◽  
Nadia A Lanman ◽  
Vikki Marie Weake ◽  
...  

Age-related loss of cellular function and increased cell death are characteristic hallmarks of aging. While defects in gene expression and RNA metabolism have been linked with age-associated human neuropathies, it is not clear how the changes that occur during aging contribute to loss of gene expression homeostasis. R-loops are DNA-RNA hybrids that typically form co-transcriptionally via annealing of the nascent RNA to the template DNA strand, displacing the non-template DNA strand. Dysregulation of R-loop homeostasis has been associated with both transcriptional impairment and genome instability. Importantly, a growing body of evidence links R-loop accumulation with cellular dysfunction, increased cell death and chronic disease onset. Here, we characterized the R-loop landscape in aging Drosophila melanogaster photoreceptor neurons. Our data shows that transcribed genes in Drosophila photoreceptor neurons accumulate R-loops during aging. Further, our data reveals an association between age-related R-loop accumulation and decreased expression of long and highly expressed genes. Lastly, we show that photoreceptor-specific depletion of Top3β, a DNA/RNA topoisomerase associated with R-loop resolution, leads to both downregulation of of long genes with neuronal function and decreased visual response in flies. Together, our studies present novel data showing increased levels of R-loop in aging photoreceptor neurons, highlighting the link between dysregulation of R-loop homeostasis, gene expression and visual function.



PLoS Genetics ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. e1009613
Author(s):  
Clara Poupault ◽  
Diane Choi ◽  
Khanh Lam-Kamath ◽  
Deepshe Dewett ◽  
Ansa Razzaq ◽  
...  

Color vision in Drosophila melanogaster is based on the expression of five different color-sensing Rhodopsin proteins in distinct subtypes of photoreceptor neurons. Promoter regions of less than 300 base pairs are sufficient to reproduce the unique, photoreceptor subtype-specific rhodopsin expression patterns. The underlying cis-regulatory logic remains poorly understood, but it has been proposed that the rhodopsin promoters have a bipartite structure: the distal promoter region directs the highly restricted expression in a specific photoreceptor subtype, while the proximal core promoter region provides general activation in all photoreceptors. Here, we investigate whether the rhodopsin promoters exhibit a strict specialization of their distal (subtype specificity) and proximal (general activation) promoter regions, or if both promoter regions contribute to generating the photoreceptor subtype-specific expression pattern. To distinguish between these two models, we analyze the expression patterns of a set of hybrid promoters that combine the distal promoter region of one rhodopsin with the proximal core promoter region of another rhodopsin. We find that the function of the proximal core promoter regions extends beyond providing general activation: these regions play a previously underappreciated role in generating the non-overlapping expression patterns of the different rhodopsins. Therefore, cis-regulatory motifs in both the distal and the proximal core promoter regions recruit transcription factors that generate the unique rhodopsin patterns in a combinatorial manner. We compare this combinatorial regulatory logic to the regulatory logic of olfactory receptor genes and discuss potential implications for the evolution of rhodopsins.



Genetics ◽  
2021 ◽  
Author(s):  
Juan Jauregui-Lozano ◽  
Kimaya Bakhle ◽  
Vikki M Weake

Abstract The chromatin landscape defines cellular identity in multicellular organisms with unique patterns of DNA accessibility and histone marks decorating the genome of each cell type. Thus, profiling the chromatin state of different cell types in an intact organism under disease or physiological conditions can provide insight into how chromatin regulates cell homeostasis in vivo. To overcome the many challenges associated with characterizing chromatin state in specific cell types, we developed an improved approach to isolate Drosophila melanogaster nuclei tagged with a GFPKASH protein. The perinuclear space-localized KASH domain anchors GFP to the outer nuclear membrane, and expression of UAS-GFPKASH can be controlled by tissue-specific Gal4 drivers. Using this protocol, we profiled chromatin accessibility using an improved version of Assay for Transposable Accessible Chromatin followed by sequencing (ATAC-seq), called Omni-ATAC. In addition, we examined the distribution of histone marks using Chromatin immunoprecipitation followed by sequencing (ChIP-seq) and Cleavage Under Targets and Tagmentation (CUT&Tag) in adult photoreceptor neurons. We show that the chromatin landscape of photoreceptors reflects the transcriptional state of these cells, demonstrating the quality and reproducibility of our approach for profiling the transcriptome and epigenome of specific cell types in Drosophila.



Author(s):  
Himanshu Malhotra ◽  
Cassandra L. Barnes ◽  
Peter D. Calvert


Sign in / Sign up

Export Citation Format

Share Document