scholarly journals A Step Length Estimation Model of Coefficient Self-Determined Based on Peak-Valley Detection

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Wenxia Lu ◽  
Fei Wu ◽  
Hai Zhu ◽  
Yujin Zhang

Without any preinstalled infrastructure, pedestrian dead reckoning (PDR) is a promising indoor positioning technology for pedestrians carrying portable devices to navigate. Step detection and step length estimation (SLE) are two essential components for the pedestrian navigation based on PDR. To solve the overcounting problem, this study proposes a peak-valley detection method, which can remove the abnormal values effectively. The current step length models mostly depend on individual parameters that need to be predetermined for different users. Based on fuzzy logic (FL), we establish a rule base that can adjust the coefficient in the Weinberg model adaptively for every detected step of various human shapes walking. Specifically, to determine the FL rule base, we collect user acceleration data from 10 volunteers walking under the combination of diverse step length and stride frequency, and each one walks 49 times at all. The experimental results demonstrate that our proposed method adapts to different kinds of persons walking at various step velocities. Peak-valley detection can achieve an average accuracy of 99.77% during 500 steps of free walking. Besides, the average errors of 5 testers are all less than 4 m per 100 m and the smallest one is 1.74 m per 100 m using our coefficient self-determined step length estimation model.

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3527
Author(s):  
Melanija Vezočnik ◽  
Roman Kamnik ◽  
Matjaz B. Juric

Inertial sensor-based step length estimation has become increasingly important with the emergence of pedestrian-dead-reckoning-based (PDR-based) indoor positioning. So far, many refined step length estimation models have been proposed to overcome the inaccuracy in estimating distance walked. Both the kinematics associated with the human body during walking and actual step lengths are rarely used in their derivation. Our paper presents a new step length estimation model that utilizes acceleration magnitude. To the best of our knowledge, we are the first to employ principal component analysis (PCA) to characterize the experimental data for the derivation of the model. These data were collected from anatomical landmarks on the human body during walking using a highly accurate optical measurement system. We evaluated the performance of the proposed model for four typical smartphone positions for long-term human walking and obtained promising results: the proposed model outperformed all acceleration-based models selected for the comparison producing an overall mean absolute stride length estimation error of 6.44 cm. The proposed model was also least affected by walking speed and smartphone position among acceleration-based models and is unaffected by smartphone orientation. Therefore, the proposed model can be used in the PDR-based indoor positioning with an important advantage that no special care regarding orientation is needed in attaching the smartphone to a particular body segment. All the sensory data acquired by smartphones that we utilized for evaluation are publicly available and include more than 10 h of walking measurements.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 214 ◽  
Author(s):  
Itzik Klein

One of the approaches for indoor positioning using smartphones is pedestrian dead reckoning. There, the user step length is estimated using empirical or biomechanical formulas. Such calculation was shown to be very sensitive to the smartphone location on the user. In addition, knowledge of the smartphone location can also help for direct step-length estimation and heading determination. In a wider point of view, smartphone location recognition is part of human activity recognition employed in many fields and applications, such as health monitoring. In this paper, we propose to use deep learning approaches to classify the smartphone location on the user, while walking, and require robustness in terms of the ability to cope with recordings that differ (in sampling rate, user dynamics, sensor type, and more) from those available in the train dataset. The contributions of the paper are: (1) Definition of the smartphone location recognition framework using accelerometers, gyroscopes, and deep learning; (2) examine the proposed approach on 107 people and 31 h of recorded data obtained from eight different datasets; and (3) enhanced algorithms for using only accelerometers for the classification process. The experimental results show that the smartphone location can be classified with high accuracy using only the smartphone’s accelerometers.


2016 ◽  
Vol 52 (11) ◽  
pp. 923-924 ◽  
Author(s):  
Yu Liu ◽  
Shenglong Li ◽  
Chong Mu ◽  
Yingxue Wang

2018 ◽  
Vol 18 (4) ◽  
pp. 1600-1611 ◽  
Author(s):  
Alessio Martinelli ◽  
Han Gao ◽  
Paul D. Groves ◽  
Simone Morosi

2019 ◽  
Vol 11 (9) ◽  
pp. 1140 ◽  
Author(s):  
Qu Wang ◽  
Langlang Ye ◽  
Haiyong Luo ◽  
Aidong Men ◽  
Fang Zhao ◽  
...  

Stride length and walking distance estimation are becoming a key aspect of many applications. One of the methods of enhancing the accuracy of pedestrian dead reckoning is to accurately estimate the stride length of pedestrians. Existing stride length estimation (SLE) algorithms present good performance in the cases of walking at normal speed and the fixed smartphone mode (handheld). The mode represents a specific state of the carried smartphone. The error of existing SLE algorithms increases in complex scenes with many mode changes. Considering that stride length estimation is very sensitive to smartphone modes, this paper focused on combining smartphone mode recognition and stride length estimation to provide an accurate walking distance estimation. We combined multiple classification models to recognize five smartphone modes (calling, handheld, pocket, armband, swing). In addition to using a combination of time-domain and frequency-domain features of smartphone built-in accelerometers and gyroscopes during the stride interval, we constructed higher-order features based on the acknowledged studies (Kim, Scarlett, and Weinberg) to model stride length using the regression model of machine learning. In the offline phase, we trained the corresponding stride length estimation model for each mode. In the online prediction stage, we called the corresponding stride length estimation model according to the smartphone mode of a pedestrian. To train and evaluate the performance of our SLE, a dataset with smartphone mode, actual stride length, and total walking distance were collected. We conducted extensive and elaborate experiments to verify the performance of the proposed algorithm and compare it with the state-of-the-art SLE algorithms. Experimental results demonstrated that the proposed walking distance estimation method achieved significant accuracy improvement over existing individual approaches when a pedestrian was walking in both indoor and outdoor complex environments with multiple mode changes.


Sign in / Sign up

Export Citation Format

Share Document