scholarly journals SANS: Self-Sovereign Authentication for Network Slices

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xavier Salleras ◽  
Vanesa Daza

5G communications proposed significant improvements over 4G in terms of efficiency and security. Among these novelties, the 5G network slicing seems to have a prominent role: deploy multiple virtual network slices, each providing a different service with different needs and features. Like this, a Slice Operator (SO) ruling a specific slice may want to offer a service for users meeting some requirements. It is of paramount importance to provide a robust authentication protocol, able to ensure that users meet the requirements, providing at the same time a privacy-by-design architecture. This makes even more sense having a growing density of Internet of Things (IoT) devices exchanging private information over the network. In this paper, we improve the 5G network slicing authentication using a Self-Sovereign Identity (SSI) scheme: granting users full control over their data. We introduce an approach to allow a user to prove his right to access a specific service without leaking any information about him. Such an approach is SANS, a protocol that provides nonlinkable protection for any issued information, preventing an SO or an eavesdropper from tracking users’ activity and relating it to their real identities. Furthermore, our protocol is scalable and can be taken as a framework for improving related technologies in similar scenarios, like authentication in the 5G Radio Access Network (RAN) or other wireless networks and services. Such features can be achieved using cryptographic primitives called Zero-Knowledge Proofs (ZKPs). Upon implementing our solution using a state-of-the-art ZKP library and performing several experiments, we provide benchmarks demonstrating that our approach is affordable in speed and memory consumption.

Telecom IT ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 21-29
Author(s):  
B. Goldstein ◽  
V. Elagin ◽  
K. Kobzev ◽  
A. Grebenshchikova

Communications Service Providers are looking to 5G technology as an enabler for new revenues, with network slicing providing a cost-effective means of supporting multiple services on shared infrastructure. Different radio access technologies, network architectures, and core functions can be brought together under software control to deliver appropriate Quality of Service “slices,” enabling new levels of service innovation, such as high bandwidth for video applications, low latency for automation, and mass connectivity for Smart Cities.


Wiley 5G Ref ◽  
2020 ◽  
pp. 1-32
Author(s):  
Robert Schmidt ◽  
Navid Nikaein

2019 ◽  
Vol 68 (8) ◽  
pp. 7691-7703 ◽  
Author(s):  
Mu Yan ◽  
Gang Feng ◽  
Jianhong Zhou ◽  
Yao Sun ◽  
Ying-Chang Liang

2019 ◽  
Vol 14 (4) ◽  
pp. 49-55
Author(s):  
Ioannis-Prodromos Belikaidis ◽  
Andreas Georgakopoulos ◽  
Kostas Tsagkaris ◽  
Zwi Altman ◽  
Sana Ben Jemaa ◽  
...  

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 29525-29537 ◽  
Author(s):  
Xu Li ◽  
Rui Ni ◽  
Jun Chen ◽  
Yibo Lyu ◽  
Zhichao Rong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document