scholarly journals An Introduction to 5G Network Slicing Technology

Telecom IT ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 21-29
Author(s):  
B. Goldstein ◽  
V. Elagin ◽  
K. Kobzev ◽  
A. Grebenshchikova

Communications Service Providers are looking to 5G technology as an enabler for new revenues, with network slicing providing a cost-effective means of supporting multiple services on shared infrastructure. Different radio access technologies, network architectures, and core functions can be brought together under software control to deliver appropriate Quality of Service “slices,” enabling new levels of service innovation, such as high bandwidth for video applications, low latency for automation, and mass connectivity for Smart Cities.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xavier Salleras ◽  
Vanesa Daza

5G communications proposed significant improvements over 4G in terms of efficiency and security. Among these novelties, the 5G network slicing seems to have a prominent role: deploy multiple virtual network slices, each providing a different service with different needs and features. Like this, a Slice Operator (SO) ruling a specific slice may want to offer a service for users meeting some requirements. It is of paramount importance to provide a robust authentication protocol, able to ensure that users meet the requirements, providing at the same time a privacy-by-design architecture. This makes even more sense having a growing density of Internet of Things (IoT) devices exchanging private information over the network. In this paper, we improve the 5G network slicing authentication using a Self-Sovereign Identity (SSI) scheme: granting users full control over their data. We introduce an approach to allow a user to prove his right to access a specific service without leaking any information about him. Such an approach is SANS, a protocol that provides nonlinkable protection for any issued information, preventing an SO or an eavesdropper from tracking users’ activity and relating it to their real identities. Furthermore, our protocol is scalable and can be taken as a framework for improving related technologies in similar scenarios, like authentication in the 5G Radio Access Network (RAN) or other wireless networks and services. Such features can be achieved using cryptographic primitives called Zero-Knowledge Proofs (ZKPs). Upon implementing our solution using a state-of-the-art ZKP library and performing several experiments, we provide benchmarks demonstrating that our approach is affordable in speed and memory consumption.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Álvaro Rios ◽  
Barbara Valera-Muros ◽  
Pedro Merino-Gomez ◽  
Jerry Sobieski

This paper presents the design options for creating a Pan-European mobile network for research in the context of the European Horizon 2020 EuWireless project. The most likely direction is a platform that makes it easier to create network slices for research. In this context, we identify one promising technology to implement network slicing in 5G networks: the framework GÉANT Testbeds Service (GTS). GTS is currently a production service by GÉANT that offers remote construction and use of virtual testbeds for wired networks mapped to the real GÉANT infrastructure. These GTS-virtualized testbed environments conform to Software Define Networks (SDNs) principles and offer compute, storage, and switching resources, at scale and with line rate performance. In this paper, we explain how the current (wired oriented) GTS can be extended with the 5G components, such as radio access nodes (gNBs), transport networks, user devices, etc., in order to implement 5G network slices. Our first conclusion is that using GTS for EuWireless implementation is feasible, dramatically increasing the potential impact of this service in the research community.


Author(s):  
Doan Hoang

Software-Defined Networking (SDN) has emerged as a networking paradigm that can remove the limitations of current network infrastructures by separating the control plane from the data forwarding plane. As an immediate result, networks can be managed cost effectively and autonomously through centralising the decision-making capability at the control plane and the programmability of network devices on the data plane. This allows the two planes to evolve independently and open up separate horizontal markets on simplified network devices and programmable controllers.  More importantly, it opens up markets for infrastructure providers to provision and offer network resources on-demand to multiple tenants and for service providers to develop and deploy their services on shared infrastructure resources cost-effectively. This paper provides an essential understanding of the SDN concept and architecture. It discusses the important implications of the control/data plane separation on network devices, management and applications beyond the scope of the original SDN. It also discusses two major issues that may help to bring the disruptive technology forward: the intent northbound interface and the cost-effective SDN approaches for the industry.


Author(s):  
Zoran Bojkovic ◽  
Bojan Bakmaz ◽  
Miodrag Bakmaz

5G mobile systems can be comprehended as highly flexible and programmable E2E networking infrastructures that provide increased performance in terms of capacity, latency, reliability, and energy efficiency while meeting a plethora of diverse requirements from multiple services. Network slicing is emerging as a prospective paradigm to meet these requirements with reduced operating cost and improved time and space functionality. A network slice is the way to provide better resource isolation and increased statistical multiplexing. With dynamic slicing, 5G will operate on flexible zone of the network, permitting varying, adaptable levels or bandwidth and reliability. In this chapter, a comprehensive survey of network slicing is presented from an E2E perspective, detailing its origination and current standardization efforts, principal concepts, enabling technologies, as well as applicable solutions. In particular, it provides specific slicing solutions for each part of the 5G systems, encompassing orchestration and management in the radio access and the core network domains.


Author(s):  
Doan Hoang

Software-Defined Networking (SDN) has emerged as a networking paradigm that can remove the limitations of current network infrastructures by separating the control plane from the data forwarding plane. As an immediate result, networks can be managed cost effectively and autonomously through centralising the decision-making capability at the control plane and the programmability of network devices on the data plane. This allows the two planes to evolve independently and open up separate horizontal markets on simplified network devices and programmable controllers.  More importantly, it opens up markets for infrastructure providers to provision and offer network resources on-demand to multiple tenants and for service providers to develop and deploy their services on shared infrastructure resources cost-effectively. This paper provides an essential understanding of the SDN concept and architecture. It discusses the important implications of the control/data plane separation on network devices, management and applications beyond the scope of the original SDN. It also discusses two major issues that may help to bring the disruptive technology forward: the intent northbound interface and the cost-effective SDN approaches for the industry.


2011 ◽  
Vol 39 (3) ◽  
pp. 193-209 ◽  
Author(s):  
H. Surendranath ◽  
M. Dunbar

Abstract Over the last few decades, finite element analysis has become an integral part of the overall tire design process. Engineers need to perform a number of different simulations to evaluate new designs and study the effect of proposed design changes. However, tires pose formidable simulation challenges due to the presence of highly nonlinear rubber compounds, embedded reinforcements, complex tread geometries, rolling contact, and large deformations. Accurate simulation requires careful consideration of these factors, resulting in the extensive turnaround time, often times prolonging the design cycle. Therefore, it is extremely critical to explore means to reduce the turnaround time while producing reliable results. Compute clusters have recently become a cost effective means to perform high performance computing (HPC). Distributed memory parallel solvers designed to take advantage of compute clusters have become increasingly popular. In this paper, we examine the use of HPC for various tire simulations and demonstrate how it can significantly reduce simulation turnaround time. Abaqus/Standard is used for routine tire simulations like footprint and steady state rolling. Abaqus/Explicit is used for transient rolling and hydroplaning simulations. The run times and scaling data corresponding to models of various sizes and complexity are presented.


Author(s):  
Tochukwu Moses ◽  
David Heesom ◽  
David Oloke ◽  
Martin Crouch

The UK Construction Industry through its Government Construction Strategy has recently been mandated to implement Level 2 Building Information Modelling (BIM) on public sector projects. This move, along with other initiatives is key to driving a requirement for 25% cost reduction (establishing the most cost-effective means) on. Other key deliverables within the strategy include reduction in overall project time, early contractor involvement, improved sustainability and enhanced product quality. Collaboration and integrated project delivery is central to the level 2 implementation strategy yet the key protocols or standards relative to cost within BIM processes is not well defined. As offsite construction becomes more prolific within the UK construction sector, this construction approach coupled with BIM, particularly 5D automated quantification process, and early contractor involvement provides significant opportunities for the sector to meet government targets. Early contractor involvement is supported by both the industry and the successive Governments as a credible means to avoid and manage project risks, encourage innovation and value add, making cost and project time predictable, and improving outcomes. The contractor is seen as an expert in construction and could be counter intuitive to exclude such valuable expertise from the pre-construction phase especially with the BIM intent of äóÖbuild it twiceäó», once virtually and once physically. In particular when offsite construction is used, the contractoräó»s construction expertise should be leveraged for the virtual build in BIM-designed projects to ensure a fully streamlined process. Building in a layer of automated costing through 5D BIM will bring about a more robust method of quantification and can help to deliver the 25% reduction in overall cost of a project. Using a literature review and a case study, this paper will look into the benefits of Early Contractor Involvement (ECI) and the impact of 5D BIM on the offsite construction process.


Author(s):  
Ramesh Raghavan

This chapter presents an overview of how D&I research can be evaluated from an economic point of view. Dissemination and implementation imposes costs upon knowledge purveyors, provider organizations, public health organizations, and payers (including governments). However, whether these added costs will result in improved service delivery and, perhaps more importantly, client outcomes and improvements in population health remain as open questions. If emerging studies reveal that defined implementation strategies are more cost effective than “usual” implementation, then policymakers and service providers will need to resource these added costs of implementation in order to assure the success and sustainability of high-quality health services over the long term.


Sign in / Sign up

Export Citation Format

Share Document