scholarly journals Robust State Estimation for a Nonlinear Hybrid Model of the Alternating Activated Sludge Process Using Filtered High-Gain Observers

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Afef Boudagga ◽  
Habib Dimassi ◽  
Salim Hadj-Said ◽  
Faouzi M’Sahli

In this paper, a robust state estimation method based on a filtered high-gain observer is developed for the alternating activated sludge process (AASP) considered as a nonlinear hybrid system. Indeed, we assume that the biodegradable substrate and the ammonia concentrations in the AASP model are unmeasured due to the high cost of their sensors whose maintenance is also very expensive. The observer design is based on the association of the classical high-gain observer and the idea of the application of linear filters on the observation error to deal with measurement noise. It is shown through a Lyapunov analysis that the designed observer ensures the estimation of the unmeasured states (the biodegradable substrate and the ammonia concentrations) based on the measured dissolved oxygen and nitrate concentrations subject to noise. A comparison with the classical high-gain observer is performed via numerical simulations in order to show the robustness of the suggested estimation approach against Gaussian measurement noise.

PAMM ◽  
2014 ◽  
Vol 14 (1) ◽  
pp. 931-932 ◽  
Author(s):  
Klaus Röbenack

PAMM ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 805-806 ◽  
Author(s):  
Mirko Franke ◽  
Klaus Röbenack

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Feten Smida ◽  
Taoufik Ladhari ◽  
Salim Hadj Saïd ◽  
Faouzi M’sahli

This paper deals with the jointly estimation problem of unknown inputs and nonmeasured states of one altering aerated activated sludge process (ASP). In order to provide accurate and economic concentration measures during aerobic and anoxic phases, a cascade high gain observer (HGO) approach is developed. Only two concentrations are available; the other process’s states are assumed unavailable. The observer converges asymptotically and it leads to a good estimation of the unavailable states which are the ammonia and substrate concentration, as well as a quite reconstruction of the unknown inputs, which are the influent ammonia and the influent substrate concentrations. To highlight the efficiency of the proposed HGO with this MIMO system’s dynamics, simulation results are validated with experimental data.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-20
Author(s):  
Alfonso Sepulveda-Galvez ◽  
Jesus A. Badillo-Corona ◽  
Isaac Chairez

A set of distributed robust finite-time state observers was developed and tested to estimate the main biochemical substances in interconnected metabolic networks with complex structure. The finite-time estimator was designed by composing several supertwisting based step-by-step state observers. This segmented structure was proposed accordingly to the partition of metabolic network obtained as a result of applying the observability analysis of the model used to represent metabolic networks. The observer was developed under the assumption that a sufficient and small number of intracellular compounds can be obtained by some feasible analytic techniques. These techniques are enlisted to demonstrate the feasibility of designing the proposed observer. A set of numerical simulations was proposed to test the observer design over the hydrogen producing metabolic behavior of Escherichia coli. The numerical evaluations showed the superior performance of the observer (on recovering immeasurable state values) over classical approaches (high gain). The variations of internal metabolites inserted in the hydrogen productive metabolic networks were collected from databases. This information supplied to the observer served to validate its ability to recover the time evolution of nonmeasurable metabolites.


1996 ◽  
Vol 30 (12) ◽  
pp. 3115-3129 ◽  
Author(s):  
John C. Kabouris ◽  
Aris P. Georgakakos

Sign in / Sign up

Export Citation Format

Share Document