scholarly journals Shear Strength of Internal Reinforced Concrete Beam-Column Joints: Intelligent Modeling Approach and Sensitivity Analysis

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
De-Cheng Feng ◽  
Bo Fu

In this paper, an intelligent modeling approach is presented to predict the shear strength of the internal reinforced concrete (RC) beam-column joints and used to analyze the sensitivity of the influence factors on the shear strength. The proposed approach is established based on the famous boosting-family ensemble machine learning (ML) algorithms, i.e., gradient boosting regression tree (GBRT), which generates a strong predictive model by integrating several weak predictors, which are obtained by the well-known individual ML algorithms, e.g., DT, ANN, and SVM. The strong model is boosted as each weak predictor has its own weight in the final combination according to the performance. Compared with the conventional mechanical-driven shear strength models, e.g., the well-known modified compression field theory (MCFT), the proposed model can avoid the complicated derivation process of shear mechanism and calibration of the involved empirical parameters; thus, it provides a more convenient, fast, and robust alternative way for predicting the shear strength of the internal RC joints. To train and test the GBRT model, a total of 86 internal RC joint specimens are collected from the literatures, and four traditional ML models and the MCFT model are also employed as comparisons. The results indicate that the GBRT model is superior to both the traditional ML models and MCFT model, as its degree-of-fitting is the highest and the predicting dispersion is the lowest. Finally, the model is used to investigate the influences of different parameters on the shear strength of the internal RC joint, and the sensitivity and importance of the corresponding parameters are obtained.

Author(s):  
Ali Kaveh ◽  
Armin Dadras Eslamlou ◽  
Roya Mahdipour Moghani

Despite the importance and accuracy of empirical models, most of the existing models are only accurate on the collected experimental data. Adding new data, or even considering noise or variance in the data leads to loss of model accuracy. The objective of this paper is to alleviate overfitting and develop a more accurate and reliable alternative method using a decision-tree-based ensemble Machine Learning algorithm that uses a gradient boosting framework for the prediction of the ultimate shear strength of FRP-reinforced concrete beams without stirrups. To enhance the robustness of the results, make full use of training samples (without the validation set), and alleviate the randomness in selecting test samples, the K-Fold Cross Validation method is employed. Using a dataset including 205 samples, results show that the extreme gradient boosting framework (XGBoost) providing better prediction. In fact, XGBoost results have higher precision and higher generalization in comparison with the empirical equations, the current design codes of practice, Least Absolute Shrinkage and Selection Operator model (LASSO), and Random Forest model (RF).


Sign in / Sign up

Export Citation Format

Share Document