scholarly journals Labyrinthine Structure with Subwavelength and Broadband Sound Insulation

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Heng Jiang ◽  
Yu Liu ◽  
Wenshuai Xu ◽  
Tao Yang ◽  
Dongliang Pei ◽  
...  

In this text, the combination of spiral structure and zigzag channels is introduced to design labyrinthine structures, in which sound waves can propagate alternately in the clockwise and counterclockwise directions. Finite element method and S-parameter retrieval method are used to calculate band structures, effective parameters, and transmission properties of the structures. The influences of different structural parameters on their acoustic properties are also studied. These results show labyrinthine structures have multiple bandgaps in the range of 0 Hz–1000 Hz, and the proportion of bandgaps exceeds 33%, which indicates labyrinthine structures have good broadband properties. The normalized frequency of the lowest bandgaps is far smaller than 1, which indicates the structures take good control of sound waves on subwavelength scale. Combining units with different structural parameters can achieve better sound insulation. This research provides a new kind of space-coiling structure for low-frequency and broadband sound waves control, which have excellent application prospects.

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Yu Liu ◽  
Meng Chen ◽  
Wenshuai Xu ◽  
Tao Yang ◽  
Dongliang Pei ◽  
...  

We construct new fractal acoustic metamaterials by coiling up space, which can allow subwavelength-scale and broadband sound insulation to be achieved. Using the finite element method and the S-parameter retrieval method, the band structures, the effective parameters, and the transmission losses of these acoustic metamaterials with different fractal orders are researched individually. The results illustrate that it is easy to form low-frequency bandgaps using these materials and thus achieve subwavelength-scale sound control. As the number of fractal orders increase, more bandgaps appear. In particular, in the ΓX direction of the acoustic metamaterial lattice, more of these wide bandgaps appear in different frequency ranges, thus providing broadband sound insulation and showing promise for use in engineering applications.


2020 ◽  
Vol 34 (13) ◽  
pp. 2050136
Author(s):  
Weikang Huang ◽  
Tianning Chen ◽  
Quanyuan Jiang ◽  
Xinpei Song ◽  
Wuzhou Yu ◽  
...  

Thin plate-type acoustic metamaterials have the advantages of lightweight, high rigidity and adjustable parameters, showing great practical application values in sound wave control. In this paper, a type of perforated bi-layer plate-type acoustic metamaterials (PBPAM) is designed for low-frequency noise control. The sound insulation peaks can be increased by combining the perforated plate and synergetic masses, making the sound insulation performance close to the mass law at the resonant frequency. Compared to the results predicted by the mass law, a better performance of sound insulation is achieved based on the PBPAM. The effects of the structural parameters are investigated in this study. Based on the impedance tube experiments, the measured results have a good agreement with the simulated ones. This work can provide a reference for low-frequency and broadband sound insulation based on plate-type acoustic metamaterials in practical engineering.


2021 ◽  
pp. 101348
Author(s):  
Zhenqian Xiao ◽  
Penglin Gao ◽  
Dongwei Wang ◽  
Xiao He ◽  
Linzhi Wu

Author(s):  
Guanghua Wu ◽  
Yibo Ke ◽  
Lin Zhang ◽  
Meng Tao

Abstract Acoustic metamaterials have high potential in diverse applications, including acoustic cloaking, sound tunneling, wavefront reshaping, and sound insulation. In the present study, new metamaterials consisting of spatial coiled units are designed and fabricated to manipulate sound waves in the range 0-1600 Hz. The effective acoustic properties and band diagrams are studied. The simulation and experimental results demonstrate that the metamaterials provide an effective and feasible approach to design acoustic device such as sound cloaking and insulators.


2018 ◽  
Vol 5 (5) ◽  
pp. 171042 ◽  
Author(s):  
Santosh K. Maurya ◽  
Abhishek Pandey ◽  
Shobha Shukla ◽  
Sumit Saxena

Metamaterials are engineered materials that offer the flexibility to manipulate the incident waves leading to exotic applications such as cloaking, extraordinary transmission, sub-wavelength imaging and negative refraction. These concepts have largely been explored in the context of electromagnetic waves. Acoustic metamaterials, similar to their optical counterparts, demonstrate anomalous effective elastic properties. Recent developments have shown that coiling up the propagation path of acoustic wave results in effective elastic response of the metamaterial beyond the natural response of its constituent materials. The effective response of metamaterials is generally evaluated using the ‘S’ parameter retrieval method based on amplitude of the waves. The phase of acoustic waves contains information of wave pressure and particle velocity. Here, we show using finite-element methods that phase reversal of transmitted waves may be used to predict extreme acoustic properties in space coiling metamaterials. This change is the difference in the phase of the transmitted wave with respect to the incident wave. This method is simpler when compared with the more rigorous ‘S’ parameter retrieval method. The inferences drawn using this method have been verified experimentally for labyrinthine metamaterials by showing negative refraction for the predicted band of frequencies.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Zhifu Zhang ◽  
Weiguang Zheng ◽  
Qibai Huang

This paper studies low-frequency sound transmission loss (STL) of an infinite orthogonally rib-stiffened sandwich structure flexibly connected with periodic subwavelength arrays of finite shunted piezoelectric patches. A complete theoretical model is proposed by three steps. First, the panels and piezoelectric patches on both sides are equivalent to two homogeneous facesheets by effective medium method. Second, we take into account all inertia terms of the rib-stiffeners to establish the governing equations by space harmonic method, separating the amplitude coefficients of the equivalent facesheets through virtual work principle. Third, the expression of STL is reduced. Based on the two prerequisites of subwavelength assumption and convergence criterion, the accuracy and validity of the model are verified by finite element simulations, cited experiments, and theoretical values. In the end, parameters affecting the STL performance of the structure are studied. All of these results show that the sandwich structure can improve the low-frequency STL effectively and broaden the sound insulation bandwidth.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1544
Author(s):  
Yi-Jun Guan ◽  
Yong Ge ◽  
Hong-Xiang Sun ◽  
Shou-Qi Yuan ◽  
Xiao-Jun Liu

In this work, a low-frequency, open, sound-insulation barrier, composed of a single layer of periodic subwavelength units (with a thickness of λ/28), is demonstrated both numerically and experimentally. Each unit was constructed using two identical, oppositely oriented Helmholtz resonators, which were composed of a central square cavity surrounded by a coiled channel. In the design of the open barrier, the distance between two adjacent units was twice the width of the unit, showing high-performance ventilation, and low-frequency sound insulation. A minimum transmittance of 0.06 could be observed around 121.5 Hz, which arose from both sound reflections and absorptions, created by the coupling of symmetric and asymmetric eigenmodes of the unit, and the absorbed sound energy propagating into the central cavity was greatly reduced by the viscous loss in the channel. Additionally, by introducing a multilayer open barrier, a broadband sound insulation was obtained, and the fractional bandwidth could reach approximately 0.19 with four layers. Finally, the application of the multilayer open barrier in designing a ventilated room was further discussed, and the results presented an omnidirectional, broadband, sound-insulation effect. The proposed open, sound-insulation barrier with the advantages of ultrathin thickness; omnidirectional, low-frequency sound insulation; broad bandwidth; and high-performance ventilation has great potential in architectural acoustics and noise control.


2020 ◽  
Vol 17 (163) ◽  
pp. 20190692 ◽  
Author(s):  
Thomas R. Neil ◽  
Zhiyuan Shen ◽  
Daniel Robert ◽  
Bruce W. Drinkwater ◽  
Marc W. Holderied

Many moths are endowed with ultrasound-sensitive ears that serve the detection and evasion of echolocating bats. Moths lacking such ears could still gain protection from bat biosonar by using stealth acoustic camouflage, absorbing sound waves rather than reflecting them back as echoes. The thorax of a moth is bulky and hence acoustically highly reflective. This renders it an obvious target for any bat. Much of the thorax of moths is covered in hair-like scales, the layout of which is remarkably similar in structure and arrangement to natural fibrous materials commonly used in sound insulation. Despite this structural similarity, the effect of thorax scales on moth echoes has never been characterized. Here, we test whether and how moth thorax scales function as an acoustic absorber. From tomographic echo images, we find that the thin layer of thoracic scales of diurnal butterflies affects the strength of ultrasound echoes from the thorax very little, while the thorax scales of earless moths absorbs an average of 67 ± 9% of impinging ultrasonic sound energy. We show that the thorax scales of moths provide acoustic camouflage by acting as broadband (20–160 kHz) stealth coating. Modelling results suggest the scales are acting as a porous sound absorber; however, the thorax scales of moths achieve a considerably higher absorption than technical fibrous porous absorbers with the same structural parameters. Such scales, despite being thin and lightweight, constitute a broadband, multidirectional and efficient ultrasound absorber that reduces the moths' detectability to hunting bats and gives them a survival advantage.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1691 ◽  
Author(s):  
Pyo ◽  
Shim ◽  
Roh

Recent underwater vehicles can operate with a much lower level of noise, which increases the need for an active sonobuoy with a high detection performance. These active sonobuoys mainly use bender transducers as a projector that emits sound waves. In this study, we designed a high-performance bender transducer and verified the validity of the design through experiments. For this purpose, first we analyzed the variation of the peak transmitting voltage response (TVR) level and peak TVR frequency of the bender transducer, in relation to its structural parameters. The performance of the bender transducer was analyzed using the finite element method. Then we derived the optimal structure of the bender transducer to achieve the highest TVR. Based on the design, a prototype of the bender transducer was fabricated and its acoustic properties were measured to confirm the validity of the design.


2021 ◽  
Vol 35 (06) ◽  
pp. 2150087
Author(s):  
Quanyuan Jiang ◽  
Xiaopeng Wang ◽  
Yanhui Xi ◽  
Weikang Huang ◽  
Tianning Chen

Conventional sound shielding structures is difficult to meet the requirements of low-to-middle frequency broadband sound insulation and free ventilation. In this paper, we propose a ventilated metamaterial silencer based on Fano-like interference, which can achieve the sound transmission loss (STL) of more than 10 dB in the range of 516–970 Hz with subwavelength thickness (0.11 [Formula: see text]) while remains an opening area ratio of 23%. The designed silencer is composed of a large central orifice and four surrounding coiling channels, making the sound waves passing through the two areas generate Fano-like asymmetric transmission spectrum and form efficient reflection to insulate sound coming from various directions. The parametric studies are also carried out to investigate the tunable acoustic performance. Experiment measurement matches well with the simulation results. In the future, the proposed silencer may have potential applications in practical environments requiring broadband sound insulation and free air flows.


Sign in / Sign up

Export Citation Format

Share Document