scholarly journals Numerical Simulation of the Influence of Natural Fractures on Hydraulic Fracture Propagation

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Song Yaobin ◽  
Lu Weiyong ◽  
He Changchun ◽  
Bai Erhu

According to the theory of plane mechanics involving the interaction of hydraulic and natural fractures, the law of hydraulic fracture propagation under the influence of natural fractures is verified using theoretical analysis and RFPA2D-Flow numerical simulation approaches. The shear and tensile failure mechanisms of rock are simultaneously considered. Furthermore, the effects of the approach angle, principal stress difference, tensile strength and length of the natural fracture, and elastic modulus and Poisson’s ratio of the reservoir on the propagation law of a hydraulic fracture are investigated. The following results are obtained: (1) The numerical results agree with the experimental data, indicating that the RFPA2D-Flow software can be used to examine the hydraulic fracture propagation process under the action of natural fractures. (2) In the case of a low principal stress difference and low approach angle, the hydraulic fracture likely causes shear failure along the tip of the natural fracture. However, under a high stress difference and high approach angle, the hydraulic fracture spreads directly through the natural fracture along the original direction. (3) When natural fractures with a low tensile strength encounter hydraulic fractures, the hydraulic fractures likely deviate and expand along the natural fractures. However, in the case of natural fractures with a high tensile strength, the natural fracture surface is closed, and the hydraulic fracture directly passes through the natural fracture, propagating along the direction of the maximum principal stress. (4) Under the same principal stress difference, a longer natural fracture corresponds to the easier initiation and expansion of a hydraulic fracture from the tip of the natural fracture. However, when the size of the natural fracture is small, the hydraulic fracture tends to propagate directly through the natural fracture. (5) A smaller elastic modulus and larger Poisson’s ratio of the reservoir result in a larger fracture initiation pressure. The presented findings can provide theoretical guidance regarding the hydraulic fracturing of reservoirs with natural fractures.

2021 ◽  
Vol 292 ◽  
pp. 01007
Author(s):  
Abdullah I Asiri Waleed ◽  
Ma Xiaoming

In order to study the fracture propagation behavior after the interaction between hydraulic fractures and natural fractures, the cohensive unit of Abaqus finite element software is used to simulate the influence of natural fractures in the rock on the propagation behavior of hydraulic fractures. The simulation results show that when the approach angle is kept constant, as the in-situ stress difference increases, hydraulic fractures are more likely to penetrate the natural fractures and expand along the direction of the maximum horizontal principal stress; while the stress difference remains the same, as the approach angle increases, hydraulic fractures are easier to penetrate natural fractures and expand along the direction of maximum horizontal principal stress. When the approach angle is kept constant, as the tensile strength of natural fractures increases, hydraulic fractures are more likely to penetrate the natural cracks and expand along the direction of the maximum horizontal principal stress; while the tensile strength of natural cracks remains unchanged, as the approach angle increases, the probability of forming a complex fracture network between hydraulic fractures and natural fractures is reduced, and it is easier to penetrate the natural fractures and expand along the direction of the maximum horizontal principal stress.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Yulong Zhang ◽  
Bei Han ◽  
Xin Zhang ◽  
Yun Jia ◽  
Chun Zhu

Abstract The interaction mode of induced fracture and natural fracture plays an important role in prediction of hydraulic fracture propagation. In this paper, a two-dimensional hydromechanical coupled discrete element model is first introduced in the framework of particle flow simulation, which can well take into account mechanical and hydraulic properties of rock samples with natural fracture. The model’s parameters are strictly calibrated by conducting numerical simulations of uniaxial compression test and direct tensile and shear tests, as well as fluid flow test. The effectiveness of coupled model is also assessed by describing hydraulic fracture propagation in two representative cases, respectively, rock samples with and without preexisting fracture. With this model in hand, the effects of interaction between induced and natural fractures with different approach angles and differential stresses on fluid injection pressure and fracture propagation patterns are investigated and discussed. Results suggest that the interaction modes mainly involve three basic behaviors including the arrested, captured with offset, and directly crossing. For a given differential stress, the captured offset of hydraulic fracture by natural fracture gradually decreases with the approach angle increase, while for a fixed approach angle, that captured offset increases with differential stress decrease.


2015 ◽  
Author(s):  
Hisanao Ouchi ◽  
Amit Katiyar ◽  
John T. Foster ◽  
Mukul M. Sharma

Abstract A novel fully coupled hydraulic fracturing model based on a nonlocal continuum theory of peridynamics is presented and applied to the fracture propagation problem. It is shown that this modeling approach provides an alternative to finite element and finite volume methods for solving poroelastic and fracture propagation problems and offers some clear advantages. In this paper we specifically investigate the interaction between a hydraulic fracture and natural fractures. Current hydraulic fracturing models remain limited in their ability to simulate the formation of non-planar, complex fracture networks. The peridynamics model presented here overcomes most of the limitations of existing models and provides a novel approach to simulate and understand the interaction between hydraulic fractures and natural fractures. The model predictions in two-dimensions have been validated by reproducing published experimental results where the interaction between a hydraulic fracture and a natural fracture is controlled by the principal stress contrast and the approach angle. A detailed parametric study involving poroelasticity and mechanical properties of the rock is performed to understand why a hydraulic fracture gets arrested or crosses a natural fracture. This analysis reveals that the poroelasticity, resulting from high fracture fluid leak-off, has a dominant influence on the interaction between a hydraulic fracture and a natural fracture. In addition, the fracture toughness of the rock, the toughness of the natural fracture, and the shear strength of the natural fracture also affect the interaction between a hydraulic fracture and a natural fracture. Finally, we investigate the interaction of multiple completing fractures with natural fractures in two-dimensions and demonstrate the applicability of the approach to simulate complex fracture networks on a field scale.


Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 113 ◽  
Author(s):  
Shen Wang ◽  
Huamin Li ◽  
Dongyin Li

To investigate the mechanism of hydraulic fracture propagation in coal seams with discontinuous natural fractures, an innovative finite element meshing scheme for modeling hydraulic fracturing was proposed. Hydraulic fracture propagation and interaction with discontinuous natural fracture networks in coal seams were modeled based on the cohesive element method. The hydraulic fracture network characteristics, the growth process of the secondary hydraulic fractures, the pore pressure distribution and the variation of bottomhole pressure were analyzed. The improved cohesive element method, which considers the leak-off and seepage behaviors of fracturing liquid, is capable of modeling hydraulic fracturing in naturally fractured formations. The results indicate that under high stress difference conditions, the hydraulic fracture network is spindle-shaped, and shows a multi-level branch structure. The ratio of secondary fracture total length to main fracture total length was 2.11~3.62, suggesting that the secondary fractures are an important part of the hydraulic fracture network in coal seams. In deep coal seams, the break pressure of discontinuous natural fractures mainly depends on the in-situ stress field and the direction of natural fractures. The mechanism of hydraulic fracture propagation in deep coal seams is significantly different from that in hard and tight rock layers.


2021 ◽  
Author(s):  
Ghazal Izadi ◽  
Colleen Barton ◽  
Pierre-Francois Roux ◽  
Tebis Llobet ◽  
Thiago Pessoa ◽  
...  

Abstract For tight reservoirs where hydraulic fracturing is required to enable sufficient fluid mobility for economic production, it is critical to understand the placement of induced fractures, their connectivity, extent, and interaction with natural fractures within the system. Hydraulic fracture initiation and propagation mechanisms are greatly influenced by the effect of the stress state, rock fabric and pre-existing features (e.g. natural fractures, faults, weak bedding/laminations). A pre-existing natural fracture system can dictate the mode, orientation and size of the hydraulic fracture network. A better understanding of the fracture growth phenomena will enhance productivity and also reduce the environmental footprint as less fractures can be created in a much more efficient way. Assessing the role of natural fractures and their interaction with hydraulic fractures in order to account for them in the hydraulic fracture model is achieved by leveraging microseismicity. In this study, we have used a combination of borehole and surface microseismic monitoring to get high vertical resolution locations and source mechanisms. 3D numerical modelling of hydraulic fracturing in complex geological conditions to predict fracture propagation is essential. 3D hydraulic fracturing simulation includes modelling capabilities of stimulation parameters, true 3D fracture propagation with near wellbore 3D complexity including a coupled DFN and the associated microseismic event generation capability. A 3D hydraulic fracture model was developed and validated by matching model predictions to microseismic observations. Microseismic source mechanisms are leveraged to determine the location and geometry of pre-existing features. In this study, we simulate a DFN based on the recorded seismicity of multi stage hydraulic fractures in a horizontal well. The advanced 3D hydraulic fracture modelling software can integrate effectively and efficiently data from a variety of multi-disciplinary sources and scales to create a subsurface characterization of the unconventional reservoir. By incorporating data from 3D seismic, LWD/wireline, core, completion/stimulation monitoring, and production, the software generates a holistic reservoir model embedded in a modular, multi-physics software platform of coupled numerical solvers that capture the fundamental physics of the processes being modelled. This study illustrates the importance of a powerful software tool that captures the necessary physics of stimulation to predict the effects of various completion designs and thereby ensure the most accurate representation of an unconventional reservoir response to a stimulation treatment.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2610
Author(s):  
Wenzheng Liu ◽  
Qingdong Zeng ◽  
Jun Yao ◽  
Ziyou Liu ◽  
Tianliang Li ◽  
...  

Rock yielding may well take place during hydraulic fracturing in deep reservoirs. The prevailing models based on the linear elastic fracture mechanics (LEFM) are incapable of describing the evolution process of hydraulic fractures accurately. In this paper, a hydro-elasto-plastic model is proposed to investigate the hydraulic fracture propagation in deep reservoirs. The Drucker–Prager plasticity model, Darcy’s law, cubic law and cohesive zone model are employed to describe the plastic deformation, matrix flow, fracture flow and evolution of hydraulic fractures, respectively. Combining the embedded discrete fracture model (EDFM), extended finite element method (XFEM) and finite volume method, a hybrid numerical scheme is presented to carry out simulations. A dual-layer iterative procedure is developed based on the fixed-stress split method, Picard iterative method and Newton–Raphson iterative method. The iterative procedure is used to deal with the coupling between nonlinear deformation with fracture extension and fluid flow. The proposed model is verified against analytical solutions and other numerical simulation results. A series of numerical cases are performed to investigate the influences of rock plasticity, internal friction angle, dilatancy angle and permeability on hydraulic fracture propagation. Finally, the proposed model is extended to simulate multiple hydraulic fracture propagation. The result shows that plastic deformation can enhance the stress-shadowing effect.


Sign in / Sign up

Export Citation Format

Share Document