scholarly journals Study of Interactions between Induced and Natural Fracture Effects on Hydraulic Fracture Propagation Using a Discrete Approach

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Yulong Zhang ◽  
Bei Han ◽  
Xin Zhang ◽  
Yun Jia ◽  
Chun Zhu

Abstract The interaction mode of induced fracture and natural fracture plays an important role in prediction of hydraulic fracture propagation. In this paper, a two-dimensional hydromechanical coupled discrete element model is first introduced in the framework of particle flow simulation, which can well take into account mechanical and hydraulic properties of rock samples with natural fracture. The model’s parameters are strictly calibrated by conducting numerical simulations of uniaxial compression test and direct tensile and shear tests, as well as fluid flow test. The effectiveness of coupled model is also assessed by describing hydraulic fracture propagation in two representative cases, respectively, rock samples with and without preexisting fracture. With this model in hand, the effects of interaction between induced and natural fractures with different approach angles and differential stresses on fluid injection pressure and fracture propagation patterns are investigated and discussed. Results suggest that the interaction modes mainly involve three basic behaviors including the arrested, captured with offset, and directly crossing. For a given differential stress, the captured offset of hydraulic fracture by natural fracture gradually decreases with the approach angle increase, while for a fixed approach angle, that captured offset increases with differential stress decrease.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Song Yaobin ◽  
Lu Weiyong ◽  
He Changchun ◽  
Bai Erhu

According to the theory of plane mechanics involving the interaction of hydraulic and natural fractures, the law of hydraulic fracture propagation under the influence of natural fractures is verified using theoretical analysis and RFPA2D-Flow numerical simulation approaches. The shear and tensile failure mechanisms of rock are simultaneously considered. Furthermore, the effects of the approach angle, principal stress difference, tensile strength and length of the natural fracture, and elastic modulus and Poisson’s ratio of the reservoir on the propagation law of a hydraulic fracture are investigated. The following results are obtained: (1) The numerical results agree with the experimental data, indicating that the RFPA2D-Flow software can be used to examine the hydraulic fracture propagation process under the action of natural fractures. (2) In the case of a low principal stress difference and low approach angle, the hydraulic fracture likely causes shear failure along the tip of the natural fracture. However, under a high stress difference and high approach angle, the hydraulic fracture spreads directly through the natural fracture along the original direction. (3) When natural fractures with a low tensile strength encounter hydraulic fractures, the hydraulic fractures likely deviate and expand along the natural fractures. However, in the case of natural fractures with a high tensile strength, the natural fracture surface is closed, and the hydraulic fracture directly passes through the natural fracture, propagating along the direction of the maximum principal stress. (4) Under the same principal stress difference, a longer natural fracture corresponds to the easier initiation and expansion of a hydraulic fracture from the tip of the natural fracture. However, when the size of the natural fracture is small, the hydraulic fracture tends to propagate directly through the natural fracture. (5) A smaller elastic modulus and larger Poisson’s ratio of the reservoir result in a larger fracture initiation pressure. The presented findings can provide theoretical guidance regarding the hydraulic fracturing of reservoirs with natural fractures.


2015 ◽  
Author(s):  
Wu Kan ◽  
Jon E. Olson

Abstract Complex fracture networks have become more evident in shale reservoirs due to the interaction between pre-existing natural and hydraulic fractures. Accurate characterization of fracture complexity plays an important role in optimizing fracturing design, especially for shale reservoirs with high-density natural fractures. In this study, we simulated simultaneous multiple fracture propagation within a single fracturing stage using a complex hydraulic fracture development model. The model was developed to simulate complex fracture propagation by coupling rock mechanics and fluid mechanics. A simplified three-dimensional displacement discontinuity method was implemented to more accurately calculate fracture displacements and fracture-induced dynamic stress changes than our previously developed pseudo-3d model. The effects of perforation cluster spacing, differential stress (SHmax - Shmin) and various geometry natural fracture patterns on injection pressure and fracture complexity were investigated. The single stage simulation results shown that (1) higher differential stress suppresses fracture length and increases injection pressure; (2) there is an optimal choice for the number of fractures per stage to maximize effective fracture surface area, beyond which increasing the number of fractures actually decreases effective fracture area; and (3) fracture complexity is a function of natural fracture patterns (various regular pattern geometries were investigated). Natural fractures with small relative angle to hydraulic fractures are more likely to control fracture propagation path. Also, natural fracture patterns with more long fractures tend to increase the likelihood to dominate the preferential fracture trend of fracture trajectory. Our numerical model can provide a physics-based complex fracture network that can be imported into reservoir simulation models for production analysis. The overall sensitivity results presented should serve as guidelines for fracture complexity analysis.


Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 113 ◽  
Author(s):  
Shen Wang ◽  
Huamin Li ◽  
Dongyin Li

To investigate the mechanism of hydraulic fracture propagation in coal seams with discontinuous natural fractures, an innovative finite element meshing scheme for modeling hydraulic fracturing was proposed. Hydraulic fracture propagation and interaction with discontinuous natural fracture networks in coal seams were modeled based on the cohesive element method. The hydraulic fracture network characteristics, the growth process of the secondary hydraulic fractures, the pore pressure distribution and the variation of bottomhole pressure were analyzed. The improved cohesive element method, which considers the leak-off and seepage behaviors of fracturing liquid, is capable of modeling hydraulic fracturing in naturally fractured formations. The results indicate that under high stress difference conditions, the hydraulic fracture network is spindle-shaped, and shows a multi-level branch structure. The ratio of secondary fracture total length to main fracture total length was 2.11~3.62, suggesting that the secondary fractures are an important part of the hydraulic fracture network in coal seams. In deep coal seams, the break pressure of discontinuous natural fractures mainly depends on the in-situ stress field and the direction of natural fractures. The mechanism of hydraulic fracture propagation in deep coal seams is significantly different from that in hard and tight rock layers.


SPE Journal ◽  
2017 ◽  
Vol 22 (06) ◽  
pp. 1714-1738 ◽  
Author(s):  
Mahdi Haddad ◽  
Jing Du ◽  
Sandrine Vidal-Gilbert

Summary Microseismic mapping during the hydraulic-fracturing processes in the Vaca Muerta (VM) Shale in Argentina shows a group of microseismic events occurring at shallower depth and at later injection time, and they clearly deviate from the growing planar hydraulic fracture. This spatial and temporal behavior of these shallow microseismic events incurs some questions regarding the nature of these events and their connectivity to the hydraulic fracture. To answer these questions, in this article, we investigate these phenomena by use of a true 3D fracture-propagation-modeling tool along with statistical analysis on the properties of microseismic events. First, we propose a novel technique in Abaqus incorporating fracture intersections in true 3D hydraulic-fracture-propagation simulations by use of a pore-pressure cohesive zone model (CZM), which is validated by comparing our numerical results with the Khristianovic-Geertsma-de Klerk (KGD) solution (Khristianovic and Zheltov 1955; Geertsma and de Klerk 1969). The simulations fully couple slot flow in the fracture with poroelasticity in the matrix and continuum-based leakoff on the fracture walls, and honor the fracture-tip effects in quasibrittle shales. By use of this model, we quantify vertical-natural-fracture activation and fluid infiltration depending on reservoir depth, fracturing-fluid viscosity, mechanical properties of the natural-fracture cohesive layer, natural-fracture conductivity, and horizontal stress contrast. The modeling results demonstrate this natural-fracture activation in coincidence with the hydraulic-fracture-growth complexities at the intersection, such as height throttling, sharp aperture reduction after the intersection, and multibranching at various heights and directions. Finally, we investigate the hydraulic-fracture intersection with a natural fracture in the multilayer VM Shale. We infer the natural-fracture location and orientation from the microseismic-events map and formation microimager log in a nearby vertical well, respectively. We integrate the other field information such as mechanical, geological, and operational data to provide a realistic hydraulic-fracturing simulation in the presence of a natural fracture. Our 3D fracturing simulations equipped with the new fracture-intersection model rigorously simulate the growth of a realistic hydraulic-connection path toward the natural fracture at shallower depths, which was in agreement with our microseismic observations.


Sign in / Sign up

Export Citation Format

Share Document