scholarly journals Experimental Investigation of the Fatigue Behavior of Basalt Fiber Reinforced Polymer Grid-Concrete Interface

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Bo Wen ◽  
Chunfeng Wan ◽  
Lin Liu ◽  
Da Fang ◽  
Caiqian Yang

Fatigue behavior is an important factor for mechanical analysis of concrete members reinforced by basalt fiber reinforced polymer (BFRP) grid and polymer cement mortar (PCM) and plays a critical role in ensuring the safety of reinforced concrete bridges and other structures. In this study, on the basis of the static loading test results of concrete specimens reinforced by BFRP grid and PCM, a series of fatigue tests with different loading levels were conducted on interfaces between BFRP grid and concrete to investigate the fatigue behavior of BFRP grid-concrete interfaces. The test results indicate that with high loading level, the fatigue failure mode of interface is interfacial peeling failure while it transforms to the fatigue fracture of the BFRP grid under low loading level. The fatigue life (S-N) curves of BFRP grid-concrete interface are obtained and fitted in stages according to different failure modes, and the critical point of the two failure modes is pointed out. The relative slip evolution of interface during fatigue is further revealed in different stages with two failure modes, and the law of interface strain is studied with the increase of fatigue times. The relation of effective bonding length of interface and fatigue times is also described.

2020 ◽  
Vol 23 (15) ◽  
pp. 3323-3334
Author(s):  
Buntheng Chhorn ◽  
WooYoung Jung

The bonding performance of basalt fiber-reinforced polymer and concrete substrate has a significant effect on the reliability of externally strengthened existing concrete structure, due to being the most vulnerable element to failure in this fiber-reinforced polymer–concrete strengthening system. Its failure can result in the failure of the whole structure. Although many previous researchers have been interested in the tensile bonding strength of carbon fiber-reinforced polymer and glass fiber-reinforced polymer–concrete interface, that of basalt fiber-reinforced polymer–concrete interface has been very limited. Thus, the objective of this study is to experimentally assess the tensile bonding strength of the basalt fiber-reinforced polymer–concrete interface. The effects of high temperature, freezing–thawing cycles, type of resin, and concrete crack widths on the tensile bonding strength are also investigated. The pull-off experiment is conducted according to ASTM D7522/D7522M-15. A total of 205 core specimens of 50 mm diameter and 10 mm depth were taken from 41 concrete beams. The experimental results illustrate that both freezing–thawing and high-temperature condition have a substantial effect on the bonding strength of the basalt fiber-reinforced polymer–concrete interface. Bonding strength was decreased within the range of about 9%–30% when the number of freezing–thawing cycles increases from 100 to 300; likewise, it was decreased up to 30% when the exposure temperature rises to 200°C. Also, the specimens which were repaired to close their cracks by epoxy resin had no significant effect on the bonding strength of basalt fiber-reinforced polymer–concrete interface, when the specimens had crack width of less than 1.5 mm.


2020 ◽  
Vol 23 (8) ◽  
pp. 1534-1547 ◽  
Author(s):  
Jingting Huang ◽  
Tao Li ◽  
Dayong Zhu ◽  
Peng Gao ◽  
An Zhou

This article studies the compressive behavior of concrete columns confined by different basalt fiber–reinforced polymers. A total of 30 columns were divided into 10 groups according to section shapes (circular and square), basalt fiber–reinforced polymer types (unidirectional basalt fiber–reinforced polymer, bidirectional basalt fiber–reinforced polymer, and hybrid basalt fiber–reinforced polymer/carbon fiber–reinforced polymers), and number of layers (0, 1, and 2). The test results showed that the compressive strengths of confined specimens increased by 20%–71% for circular columns and by 23%–41% for square columns. Similarly, the ultimate strains improved by 49%–296% for circular specimens and by 45%–145% for square specimens. The two-layer basalt fiber–reinforced polymer jacket had the best confinement effect, whereas the confining effect of bidirectional basalt fiber–reinforced polymer wrapping was relatively lower than that of unidirectional basalt fiber–reinforced polymer wrapping. Moreover, both the strength and ultimate strain of confined concrete improved with increasing number of basalt fiber–reinforced polymer layers. Finite element numerical models were also developed and verified by experimental results, and then the stress distributions of basalt fiber–reinforced polymer jackets and cross-sectional concrete were presented. Based on the test results and experimental data from several existing studies, modified strength and ultimate strain models were further developed for basalt fiber–reinforced polymer-confined circular and square columns.


Sign in / Sign up

Export Citation Format

Share Document