Experimental evaluation of the tensile bonding strength of the basalt fiber-reinforced polymer–concrete interface

2020 ◽  
Vol 23 (15) ◽  
pp. 3323-3334
Author(s):  
Buntheng Chhorn ◽  
WooYoung Jung

The bonding performance of basalt fiber-reinforced polymer and concrete substrate has a significant effect on the reliability of externally strengthened existing concrete structure, due to being the most vulnerable element to failure in this fiber-reinforced polymer–concrete strengthening system. Its failure can result in the failure of the whole structure. Although many previous researchers have been interested in the tensile bonding strength of carbon fiber-reinforced polymer and glass fiber-reinforced polymer–concrete interface, that of basalt fiber-reinforced polymer–concrete interface has been very limited. Thus, the objective of this study is to experimentally assess the tensile bonding strength of the basalt fiber-reinforced polymer–concrete interface. The effects of high temperature, freezing–thawing cycles, type of resin, and concrete crack widths on the tensile bonding strength are also investigated. The pull-off experiment is conducted according to ASTM D7522/D7522M-15. A total of 205 core specimens of 50 mm diameter and 10 mm depth were taken from 41 concrete beams. The experimental results illustrate that both freezing–thawing and high-temperature condition have a substantial effect on the bonding strength of the basalt fiber-reinforced polymer–concrete interface. Bonding strength was decreased within the range of about 9%–30% when the number of freezing–thawing cycles increases from 100 to 300; likewise, it was decreased up to 30% when the exposure temperature rises to 200°C. Also, the specimens which were repaired to close their cracks by epoxy resin had no significant effect on the bonding strength of basalt fiber-reinforced polymer–concrete interface, when the specimens had crack width of less than 1.5 mm.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Bo Wen ◽  
Chunfeng Wan ◽  
Lin Liu ◽  
Da Fang ◽  
Caiqian Yang

Fatigue behavior is an important factor for mechanical analysis of concrete members reinforced by basalt fiber reinforced polymer (BFRP) grid and polymer cement mortar (PCM) and plays a critical role in ensuring the safety of reinforced concrete bridges and other structures. In this study, on the basis of the static loading test results of concrete specimens reinforced by BFRP grid and PCM, a series of fatigue tests with different loading levels were conducted on interfaces between BFRP grid and concrete to investigate the fatigue behavior of BFRP grid-concrete interfaces. The test results indicate that with high loading level, the fatigue failure mode of interface is interfacial peeling failure while it transforms to the fatigue fracture of the BFRP grid under low loading level. The fatigue life (S-N) curves of BFRP grid-concrete interface are obtained and fitted in stages according to different failure modes, and the critical point of the two failure modes is pointed out. The relative slip evolution of interface during fatigue is further revealed in different stages with two failure modes, and the law of interface strain is studied with the increase of fatigue times. The relation of effective bonding length of interface and fatigue times is also described.


2018 ◽  
Vol 765 ◽  
pp. 355-360 ◽  
Author(s):  
Sakol Suon ◽  
Shahzad Saleem ◽  
Amorn Pimanmas

This paper presents an experimental study on the compressive behavior of circular concrete columns confined by a new class of composite materials originated from basalt rock, Basalt Fiber Reinforced Polymer (BFRP). The primary objective of this study is to observe the compressive behavior of BFRP-confined cylindrical concrete column specimens under the effect of different number of layers of basalt fiber as a study parameter (3, 6, and 9 layers). For this purpose, 8 small scale circular concrete specimens with no internal steel reinforcement were tested under monotonic axial compression to failure. The results of BFRP-confined concrete specimens of this study showed a bilinear stress-strain response with two ascending branches. Consequently, the performance of confined columns was improved as the number of BFRP layer was increased, in which all the specimens exhibited ductile behavior before failure with significant strength enhancement. The experimental results indicate the well-performing of basalt fiber in improving the concrete compression behavior with an increase in number of FRP layers.


2016 ◽  
Vol 51 (9) ◽  
pp. 1275-1284 ◽  
Author(s):  
Jianzhe Shi ◽  
Xin Wang ◽  
Huang Huang ◽  
Zhishen Wu

Relaxation is a key factor that controls the application of prestressing fiber-reinforced polymer tendons. This paper focuses on the evaluation of the relaxation behavior of newly developed basalt fiber-reinforced polymer tendons through an approach considering anchorage slippage. A series of relaxation tests on basalt fiber-reinforced polymer tendons subjected to three levels of initial stresses (0.4 fu, 0.5 fu, and 0.6 fu, where fu = ultimate strength) were conducted using a specially designed test setup that eliminates the impact of slippage at the anchor zone. An additional group of tests was conducted to validate the enhancement effect of pretension on the relaxation behavior. The relaxation rates at one million hours were predicted based on experimental fitting. Finally, the relaxation rates at 1000 h were predicted using the correlation between the relaxation and creep and were validated with the experimental relaxation rates. The results demonstrate the effectiveness of the proposed setup in measuring the relaxation loss of specimens and reveal that the relaxation rates of untreated basalt fiber-reinforced polymer tendons at 1000 h are 4.2%, 5.3%, and 6.4% at 0.4 fu, 0.5 fu, and 0.6 fu, respectively. Pretension treatment performs effective in relaxation loss controlling. BFRP tendons are recommended to be applied at an initial stress of 0.5 fu after pretension treatment, with one-million-hour relaxation rate equal to 6.7%. Furthermore, the relaxation rate at 1000 h can be predicted accurately based on the creep behavior. The conclusions of this study can provide guidance for the prestressing applications of basalt fiber-reinforced polymer tendons.


Sign in / Sign up

Export Citation Format

Share Document