scholarly journals Optimization of Sports Event Management System Based on Wireless Sensor Network

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuan Zhang ◽  
Xuanli Zhao ◽  
Jing Shen ◽  
Kaixuan Shi ◽  
Yang Yu

In recent years, wireless sensor network technology has developed rapidly and its role in managing systems for sports events has been widely used. Wireless sensor networks not only have low wiring cost, high monitoring accuracy, and good fault tolerance but also can be monitored remotely and have outstanding advantages in fault diagnosis and safety monitoring. In this paper, firstly, the wireless sensor network hierarchical routing protocol is studied and its network model and workflow are analyzed; according to the energy consumption of the wireless sensor network, the selection method of the optimal number of cluster heads is proposed to analyze the advantages and disadvantages existing in the protocol. Secondly, the improvement of the routing protocol is proposed to address the problems of uneven distribution of cluster heads and cluster head election without considering the residual energy of nodes in the protocol. When dividing clusters, the number of neighboring nodes is considered so that cluster heads are distributed more evenly in the network; when electing cluster heads, the residual energy of nodes in the cluster is considered to balance the whole network load, and when electing cluster heads, the residual energy of nodes in the cluster is considered to balance the whole network load. Finally, simulation experiments are conducted in this paper using simulation software, and the simulation results show that the data fusion algorithm is more effective than the protocol in reducing the average energy consumption of nodes and extending the network lifetime; these features make wireless sensors more beneficial for better management of sporting events as well as better optimization.

2013 ◽  
Vol 765-767 ◽  
pp. 980-984
Author(s):  
Xi Rong Bao ◽  
Jia Hua Xie ◽  
Shuang Long Li

This article focused on the energy limit property of Wireless Sensor Network, and proposed a residual energy based algorithm WN-LEACH, with the classic network mode of LEACH routing algorithm. The algorithm combines the proportion of residual energy in the total energy with the cumulative number of the normal nodes supported by the cluster heads as a cluster selection reference. In order to balance the energy consumption of each cluster-head, the algorithm took both the different positions of the base station and the initial energy of the network into consideration, and weighted the two factors to balance the energy consumption between transmitting the signals and data fusion. Simulation results show that the algorithm can promote the lifetime of the uneven energy network and does not impair the effects of the LEACH algorithm.


2018 ◽  
Vol 232 ◽  
pp. 04050
Author(s):  
Yong-wen Du ◽  
Zhang-min Wang ◽  
Gang Cai ◽  
Jun-hui Gong

In order to solve the problem of unbalanced load consumption of nodes for wireless sensor networks (WSNs), this paper proposes a load-balanced routing algorithm based on cluster heads optimization for wireless sensor network. The proposed algorithm first applies first-order wireless transmission model to calculate the optimal number of clusters, then calculate nodes competitiveness rating by fuzzy algorithm considering the residual energy of node and distance from the node to base station, cluster head selection uses unequal clustering algorithm according to the competitiveness of nodes. By node competitiveness and energy management mechanism which cooperate with each other to select the best cluster heads. Use connected optimization between clusters to search multi-hop paths base station for reducing energy consumption of node, and consider transmission energy consumption, residual energy, transmission distance and other factors. The experimental results show that the proposed algorithm compared with LEACH and UCDP algorithm, can balance loading and effectively extend the life cycle of wireless sensor network.


Author(s):  
Yakubu Abdul-Wahab Nawusu ◽  
Alhassan Abdul-Barik ◽  
Salifu Abdul-Mumin

Extending the lifetime of a wireless sensor network is vital in ensuring continuous monitoring functions in a target environment. Many techniques have appeared that seek to achieve such prolonged sensing gains. Clustering and improved selection of cluster heads play essential roles in the performance of sensor network functions. Cluster head in a hierarchical arrangement is responsible for transmitting aggregated data from member nodes to a base station for further user-specific data processing and analysis. Minimising the quick dissipation of cluster heads energy requires a careful choice of network factors when selecting a cluster head to prolong the lifetime of a wireless sensor network. In this work, we propose a multi-criteria cluster head selection technique to extend the sensing lifetime of a heterogeneous wireless sensor network. The proposed protocol incorporates residual energy, distance, and node density in selecting a cluster head. Each factor is assigned a weight using the Rank Order Centroid based on its relative importance. Several simulation tests using MATLAB 7.5.0 (R2007b) reveal improved network lifetime and other network performance indicators, including stability and throughput, compared with popular protocols such as LEACH and the SEP. The proposed scheme will be beneficial in applications requiring reliable and stable data sensing and transmission functions.


2020 ◽  
Author(s):  
Hamid Reza Farahzadi ◽  
Mostafa Langarizadeh ◽  
Mohammad Mirhosseini ◽  
Seyed Ali Fatemi Aghda

AbstractWireless sensor network has special features and many applications, which have attracted attention of many scientists. High energy consumption of these networks, as a drawback, can be reduced by a hierarchical routing algorithm. The proposed algorithm is based on the Low Energy Adaptive Clustering Hierarchy (LEACH) and Quadrant Cluster based LEACH (Q-LEACH) protocols. To reduce energy consumption and provide a more appropriate coverage, the network was divided into several regions and clusters were formed within each region. In selecting the cluster head (CH) in each round, the amount of residual energy and the distance from the center of each node were calculated by the base station (including the location and residual energy of each node) for all living nodes in each region. In this regard, the node with the largest value had the highest priority to be selected as the CH in each network region. The base station calculates the CH due to the lack of energy constraints and is also responsible for informing it throughout the network, which reduces the load consumption and tasks of nodes in the network. The information transfer steps in this protocol are similar to the LEACH protocol stages. To better evaluate the results, the proposed method was implemented with LEACH LEACH-SWDN, and Q-LEACH protocols using MATLAB software. The results showed better performance of the proposed method in network lifetime, first node death time, and the last node death time.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Haiyan Shi ◽  
Wanliang Wang ◽  
Ngaiming Kwok

The wireless sensor network (WSN), consisting of a large number of microsensors with wireless communication abilities, has become an indispensable tool for use in monitoring and surveillance applications. Despite its advantages in deployment flexibility and fault tolerance, the WSN is vulnerable to failures due to the depletion of limited onboard battery energy. A major portion of energy consumption is caused by the transmission of sensed results to the master processor. The amount of energy used, in fact, is related to both the duration of sensing and data transmission. Hence, in order to extend the operation lifespan of the WSN, a proper allocation of sensing workload among the sensors is necessary. An assignment scheme is here formulated on the basis of the divisible load theory, namely, the energy dependent divisible load theory (EDDLT) for sensing workload allocations. In particular, the amount of residual energies onboard sensors are considered while deciding the workload assigned to each sensor. Sensors with smaller amount of residual energy are assigned lighter workloads, thus, allowing for a reduced energy consumption and the sensor lifespan is extended. Simulation studies are conducted and results have illustrated the effectiveness of the proposed workload allocation method.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zuo Chen ◽  
Min He ◽  
Wei Liang ◽  
Kai Chen

Wireless sensor network (WSN) is a kind of distributed and self-organizing networks, in which the sensor nodes have limited communication bandwidth, memory, and limited energy. The topology construction of this network is usually vulnerable when attacked by malicious nodes. Besides, excessive energy consumption is a problem that can not be ignored. Therefore, this paper proposes a secure topology protocol of WSN which is trust-aware and of low energy consumption, called TLES. The TLES considers the trust value as an important factor affecting the behavior of node. In detail, the TLES would take trust value, residual energy of the nodes, and node density into consideration when selecting cluster head nodes. Then, TLES constructs these cluster head nodes by choosing the next hop node according to distance to base station (BS), nodes’ degrees, and residual energy, so as to establish a safe, reliable, and energy saving network. Experimental results show that the algorithm can effectively isolate the malicious node in the network and reduce the consumption of energy of the whole network.


2013 ◽  
Vol 13 (4) ◽  
pp. 200-205 ◽  
Author(s):  
Wang Tong ◽  
Wu Jiyi ◽  
Xu He ◽  
Zhu Jinghua ◽  
Charles Munyabugingo

In the routing protocol for wireless sensor network, the cluster size is generally fixed in clustering routing algorithm for wireless sensor network, which can easily lead to the “hot spot” problem. Furthermore, the majority of routing algorithms barely consider the problem of long distance communication between adjacent cluster heads that brings high energy consumption. Therefore, this paper proposes a new cross unequal clustering routing algorithm based on the EEUC algorithm. In order to solve the defects of EEUC algorithm, this algorithm calculating of competition radius takes the node’s position and node’s remaining energy into account to make the load of cluster heads more balanced. At the same time, cluster adjacent node is applied to transport data and reduce the energy-loss of cluster heads. Simulation experiments show that, compared with LEACH and EEUC, the proposed algorithm can effectively reduce the energy-loss of cluster heads and balance the energy consumption among all nodes in the network and improve the network lifetime


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jun Wang ◽  
Zhuangzhuang Du ◽  
Zhengkun He ◽  
Xunyang Wang

Balancing energy consumption using the clustering routing algorithms is one of the most practical solutions for prolonging the lifetime of resource-limited wireless sensor networks (WSNs). However, existing protocols cannot adequately minimize and balance the total network energy dissipation due to the additional tasks of data acquisition and transmission of cluster heads. In this paper, a cluster-head rotating election routing protocol is proposed to alleviate the problem. We discovered that the regular hierarchical clustering method and the scheme of cluster-head election area division had positive effects on reducing the energy consumption of cluster head election and intracluster communication. The election criterion composed of location and residual energy factor was proved to lower the probability of premature death of cluster heads. The chain multihop path of intercluster communication was performed to save the energy of data aggregation to the base station. The simulation results showed that the network lifetime can be efficiently extended by regulating the adjustment parameters of the protocol. Compared with LEACH, I-LEACH, EEUC, and DDEEC, the algorithm demonstrated significant performance advantages by using the number of active nodes and residual energy of nodes as the evaluation indicators. On the basis of these results, the proposed routing protocols can be utilized to increase the capability of WSNs against energy constraints.


Sign in / Sign up

Export Citation Format

Share Document