scholarly journals UWB Indoor Localization Algorithm Using Firefly of Multistage Optimization on Particle Filter

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaoguo Zhang ◽  
Yujin Kuang ◽  
Haoran Yang ◽  
Hang Lu ◽  
Yuan Yang

With the increasing application potential of indoor personnel positioning, ultra-wideband (UWB) positioning technology has attracted more and more attentions of scholars. In practice, an indoor positioning process often involves multipath and Non-Line-Of-Sight (NLOS) problems, and a particle filtering (PF) algorithm has been widely used in the indoor positioning research field because of its outstanding performance in nonlinear and non-Gaussian estimations. Aiming at mitigating the accuracy decreasing caused by the particle degradation and impoverishment in traditional Sequential Monte Carlo (SMC) positioning, we propose a method to integrate the firefly and particle algorithm for multistage optimization. The proposed algorithm not only enhances the searching ability of particles of initialization but also makes the particles propagate out of the local optimal condition in the sequential estimations. In addition, to prevent particles from falling into the oscillatory situation and find the global optimization faster, a decreasing function is designed to improve the reliability of the particle propagation. Real indoor experiments are carried out, and results demonstrate that the positioning accuracy can be improved up to 36%, and the number of needed particles is significantly reduced.

Author(s):  
J. Liu ◽  
C. Jiang ◽  
Z. Shi

Sufficient signal nodes are mostly required to implement indoor localization in mainstream research. Magnetic field take advantage of high precision, stable and reliability, and the reception of magnetic field signals is reliable and uncomplicated, it could be realized by geomagnetic sensor on smartphone, without external device. After the study of indoor positioning technologies, choose the geomagnetic field data as fingerprints to design an indoor localization system based on smartphone. A localization algorithm that appropriate geomagnetic matching is designed, and present filtering algorithm and algorithm for coordinate conversion. With the implement of plot geomagnetic fingerprints, the indoor positioning of smartphone without depending on external devices can be achieved. Finally, an indoor positioning system which is based on Android platform is successfully designed, through the experiments, proved the capability and effectiveness of indoor localization algorithm.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6598
Author(s):  
Long Cheng ◽  
Yong Wang ◽  
Mingkun Xue ◽  
Yangyang Bi

As a key technology of the Internet of Things, wireless sensor network (WSN) has been used widely in indoor localization systems. However, when the sensor is transmitting signals, it is affected by the non-line-of-sight (NLOS) transmission, and the accuracy of the positioning result is decreased. Therefore, solving the problem of NLOS positioning has become a major focus for indoor positioning. This paper focuses on solving the problem of NLOS transmission that reduces positioning accuracy in indoor positioning. We divided the anchor nodes into several groups and obtained the position information of the target node for each group through the maximum likelihood estimation (MLE). By identifying the NLOS method, a part of the position estimates polluted by NLOS transmission was discarded. For the position estimates that passed the hypothesis testing, a corresponding poly-probability matrix was established, and the probability of each position estimate from line-of-sight (LOS) and NLOS was calculated. The position of the target was obtained by combining the probability with the position estimate. In addition, we also considered the case where there was no continuous position estimation through hypothesis testing and through the NLOS tracking method to avoid positioning errors. Simulation and experimental results show that the algorithm proposed has higher positioning accuracy and higher robustness than other algorithms.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 891
Author(s):  
Imran Ashraf ◽  
Soojung Hur ◽  
Yongwan Park

The last two decades have witnessed a rich variety of indoor positioning and localization research. Starting with Microsoft Research pioneering the fingerprint approach based RADAR, MIT’s Cricket, and then moving towards beacon-based localization are few among many others. In parallel, researchers looked into other appealing and promising technologies like radio frequency identification, ultra-wideband, infrared, and visible light-based systems. However, the proliferation of smartphones over the past few years revolutionized and reshaped indoor localization towards new horizons. The deployment of MEMS sensors in modern smartphones have initiated new opportunities and challenges for the industry and academia alike. Additionally, the demands and potential of location-based services compelled the researchers to look into more robust, accurate, smartphone deployable, and context-aware location sensing. This study presents a comprehensive review of the approaches that make use of data from one or more sensors to estimate the user’s indoor location. By analyzing the approaches leveraged on smartphone sensors, it discusses the associated challenges of such approaches and points out the areas that need considerable research to overcome their limitations.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6447
Author(s):  
Keliu Long ◽  
Darryl Franck Nsalo Kong ◽  
Kun Zhang ◽  
Chuan Tian ◽  
Chong Shen

A fingerprint-based localization system is an economic way to solve an indoor positioning problem. However, the traditional off-line fingerprint collection stage is a time-consuming and laborious process which limits the use of fingerprint-based localization systems. In this paper, based on ubiquitous Wireless Fidelity (Wi-Fi) equipment and a low-cost Ultra-Wideband (UWB) ranging system (with only one UWB anchor), a ready-to-use indoor localization system is proposed to realize long-term and high-accuracy indoor positioning. More specifically, in this system, it is divided into two stages: (1) an initial stage, and (2) a positioning stage. In the initial stage, an Inertial Measure Unit (IMU) is used to calculate the position using Pedestrian Dead Reckon (PDR) algorithm within a preset number of steps, and the location-related fingerprints are collected to train a Convolutional Neural Network (CNN) regression model; simultaneously, in order to make the UWB ranging system adapt to the Non-Line-of-Sight (NLoS) environment, the increments of acceleration and angular velocity in IMU and the increments of single UWB ranging measures are correlated to pre-train a Supported Vector Regression (SVR). After reaching the threshold of time or step number, the system is changed into a positioning stage, and the CNN predicts the position calibrated by corrected UWB ranging. At last, a series of practical experiments are conducted in the real environment; the experiment results show that, due to the corrected UWB ranging measures calibrating the CNN parameters in every positioning period, this system has stable localization results in a comparative long-term range. Additionally, it has the advantages of stability, low cost, anti-noise, etc.


Author(s):  
Nadia Ghariani ◽  
Mohamed Salah Karoui ◽  
Mondher Chaoui ◽  
Mongi Lahiani ◽  
Hamadi Ghariani

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1090
Author(s):  
Wenxu Wang ◽  
Damián Marelli ◽  
Minyue Fu

A popular approach for solving the indoor dynamic localization problem based on WiFi measurements consists of using particle filtering. However, a drawback of this approach is that a very large number of particles are needed to achieve accurate results in real environments. The reason for this drawback is that, in this particular application, classical particle filtering wastes many unnecessary particles. To remedy this, we propose a novel particle filtering method which we call maximum likelihood particle filter (MLPF). The essential idea consists of combining the particle prediction and update steps into a single one in which all particles are efficiently used. This drastically reduces the number of particles, leading to numerically feasible algorithms with high accuracy. We provide experimental results, using real data, confirming our claim.


2011 ◽  
Vol 403-408 ◽  
pp. 2341-2344
Author(s):  
Xiu Ying Zhao ◽  
Hong Yu Wang ◽  
Shou Yu Tong ◽  
De You Fu

The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The PF(Particle Filtering) algorithm uses “sequential importance sampling”, previously applied to the posterior of static signals, in which the probability distribution of possible interpretations is represented by a randomly generated set. PF uses learned “sequential Monte Carlo” models, together with practical observations, to propagate and update the random set over time. The result is highly robust tracking of agile motion. Not withstanding the use of stochastic methods, the algorithm runs in near Real-Time.


2016 ◽  
Vol 04 (01) ◽  
pp. 23-34 ◽  
Author(s):  
Kexin Guo ◽  
Zhirong Qiu ◽  
Cunxiao Miao ◽  
Abdul Hanif Zaini ◽  
Chun-Lin Chen ◽  
...  

Micro unmanned aerial vehicles (UAVs) are promising to play more and more important roles in both civilian and military activities. Currently, the navigation of UAVs is critically dependent on the localization service provided by the Global Positioning System (GPS), which suffers from the multipath effect and blockage of line-of-sight, and fails to work in an indoor, forest or urban environment. In this paper, we establish a localization system for quadcopters based on ultra-wideband (UWB) range measurements. To achieve the localization, a UWB module is installed on the quadcopter to actively send ranging requests to some fixed UWB modules at known positions (anchors). Once a distance is obtained, it is calibrated first and then goes through outlier detection before being fed to a localization algorithm. The localization algorithm is initialized by trilateration and sustained by the extended Kalman filter (EKF). The position and velocity estimates produced by the algorithm will be further fed to the control loop to aid the navigation of the quadcopter. Various flight tests in different environments have been conducted to validate the performance of UWB ranging and localization algorithm.


Sign in / Sign up

Export Citation Format

Share Document