scholarly journals Archive-Based Multiobjective Evolutionary Algorithm for Large-Scale EV Charging Station Energy Management

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Wanxing Sheng ◽  
Qing Duan ◽  
Haoqing Wang ◽  
Guanglin Sha ◽  
Chunyan Ma

With the increase in renewable energy, improving the utilization rate of renewable energy is of great practical significance. The microgrid has been proved effective in addressing this issue. As a flexible load, electric vehicles are connected to the grid on a large scale, which will have an impact on the grid. In order to solve this problem, this paper proposes a microgrid energy management model for electric vehicle charging stations, which takes into account the economics of microgrid operation and the stability of grid operation. Subsequently, this paper proposes an evolutionary multiobjective optimization algorithm to deal with constraints. Finally, this paper verifies the effectiveness of the proposed model and algorithm through experiments.

2021 ◽  
Author(s):  
R. Kannan ◽  
S. Karthikkumar ◽  
P. Suseendhar ◽  
S. Pragaspathy ◽  
B. N. Ch.V. Chakravarthi ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1996 ◽  
Author(s):  
G. V. Brahmendra Kumar ◽  
Ratnam Kamala Sarojini ◽  
K. Palanisamy ◽  
Sanjeevikumar Padmanaban ◽  
Jens Bo Holm-Nielsen

In recent years, many applications have been developed for the integration of renewable energy sources (RES) into the grid in order to satisfy the demand requirement of a clean and reliable electricity generation. Increasing the number of RES creates uncertainty in load and power supply generation, which also presents an additional strain on the system. These uncertainties will affect the voltage and frequency variation, stability, protection, and safety issues at fault levels. RES present non-linear characteristics, which requires effective coordination control methods. This paper presents the stability issues and solutions associated with the integration of RES within the grid.


2020 ◽  
Vol 10 (11) ◽  
pp. 3665
Author(s):  
Nils Kroener ◽  
Kevin Förderer ◽  
Manuel Lösch ◽  
Hartmut Schmeck

The German Smart Meter Gateway (SMGW) infrastructure enables digital access to metering data and distributed energy resources by external parties. There are, however, various restrictions in order to guarantee the privacy of consumers, and strong security requirements. Furthermore, in the current state of development, there are still several challenges to overcome in order to implement demand side management (DSM) measures. In this paper, we present a prototype enabling DSM measures within the SMGW infrastructure, using the smart grid traffic light concept. The prototype implements an automated decentralized energy management system (EMS) that optimally controls an electric vehicle charging station. In the development of this prototype, we did not only evaluate five of the seven available SMGW devices, but also push the limits of the infrastructure itself. The experiments demonstrated the successful implementation of the intended DSM measure by the EMS. Even though there are technical guidelines standardizing the functionality of SMGWs, our evaluation shows that there are substantial differences between the individual SMGW devices.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4240 ◽  
Author(s):  
Khairy Sayed ◽  
Ahmed G. Abo-Khalil ◽  
Ali S. Alghamdi

This paper introduces an energy management and control method for DC microgrid supplying electric vehicles (EV) charging station. An Energy Management System (EMS) is developed to manage and control power flow from renewable energy sources to EVs through DC microgrid. An integrated approach for controlling DC microgrid based charging station powered by intermittent renewable energies. A wind turbine (WT) and solar photovoltaic (PV) arrays are integrated into the studied DC microgrid to replace energy from fossil fuel and decrease pollution from carbon emissions. Due to the intermittency of solar and wind generation, the output powers of PV and WT are not guaranteed. For this reason, the capacities of WT, solar PV panels, and the battery system are considered decision parameters to be optimized. The optimized design of the renewable energy system is done to ensure sufficient electricity supply to the EV charging station. Moreover, various renewable energy technologies for supplying EV charging stations to improve their performance are investigated. To evaluate the performance of the used control strategies, simulation is carried out in MATLAB/SIMULINK.


Sign in / Sign up

Export Citation Format

Share Document