scholarly journals Impact of Media-Induced Fear on the Control of COVID-19 Outbreak: A Mathematical Study

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chandan Maji

The COVID-19 pandemic has put the world in threat for a long time. It was first identified in Wuhan, China, in December 2019 and has been declared a pandemic by the WHO. This disease is mainly caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). So far, no vaccine or medicine has been developed for the proper treatment of this disease, so people are afraid of getting infected. The pandemic has placed many nations at the door of socioeconomic emergencies. Therefore, it is very important to predict the development trend of this epidemic, and we know mathematical modelling is a basic tool to research the dynamic behaviour of disease and predict the spreading trend of the disease. In this study, we have formulated a mathematical model for the COVID-19 outbreak by introducing a quarantine class with media-induced fear in the disease transmission rate to analyze the dynamic behaviour of this epidemic. We have calculated the basic reproduction number R0, and we observed that when R0 < 1, disease-free equilibrium is globally stable whereas if R0> 1, then the system is permanent and there exists a unique endemic equilibrium point. Global stability of the endemic equilibrium point is developed by using Li and Muldowney’s high-dimensional Bendixson criterion. Finally, some numerical simulations are performed using MATLAB to verify our analytical results.

2020 ◽  
Vol 10 (22) ◽  
pp. 8296 ◽  
Author(s):  
Malen Etxeberria-Etxaniz ◽  
Santiago Alonso-Quesada ◽  
Manuel De la Sen

This paper investigates a susceptible-exposed-infectious-recovered (SEIR) epidemic model with demography under two vaccination effort strategies. Firstly, the model is investigated under vaccination of newborns, which is fact in a direct action on the recruitment level of the model. Secondly, it is investigated under a periodic impulsive vaccination on the susceptible in the sense that the vaccination impulses are concentrated in practice in very short time intervals around a set of impulsive time instants subject to constant inter-vaccination periods. Both strategies can be adapted, if desired, to the time-varying levels of susceptible in the sense that the control efforts be increased as those susceptible levels increase. The model is discussed in terms of suitable properties like the positivity of the solutions, the existence and allocation of equilibrium points, and stability concerns related to the values of the basic reproduction number. It is proven that the basic reproduction number lies below unity, so that the disease-free equilibrium point is asymptotically stable for larger values of the disease transmission rates under vaccination controls compared to the case of absence of vaccination. It is also proven that the endemic equilibrium point is not reachable if the disease-free one is stable and that the disease-free equilibrium point is unstable if the reproduction number exceeds unity while the endemic equilibrium point is stable. Several numerical results are investigated for both vaccination rules with the option of adapting through ime the corresponding efforts to the levels of susceptibility. Such simulation examples are performed under parameterizations related to the current SARS-COVID 19 pandemic.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750019 ◽  
Author(s):  
Lifei Zheng ◽  
Xiuxiang Yang ◽  
Liang Zhang

We study an SEIRS epidemic model with an isolation and nonlinear incidence rate function. We have obtained a threshold value [Formula: see text] and shown that there is only a disease-free equilibrium point, when [Formula: see text] and an endemic equilibrium point if [Formula: see text]. We have shown that both disease-free and endemic equilibrium point are globally stable.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 520
Author(s):  
Manuel De la Sen ◽  
Santiago Alonso-Quesada ◽  
Asier Ibeas

A new discrete Susceptible-Exposed-Infectious-Recovered (SEIR) epidemic model is proposed, and its properties of non-negativity and (both local and global) asymptotic stability of the solution sequence vector on the first orthant of the state-space are discussed. The calculation of the disease-free and the endemic equilibrium points is also performed. The model has the following main characteristics: (a) the exposed subpopulation is infective, as it is the infectious one, but their respective transmission rates may be distinct; (b) a feedback vaccination control law on the Susceptible is incorporated; and (c) the model is subject to delayed partial re-susceptibility in the sense that a partial immunity loss in the recovered individuals happens after a certain delay. In this way, a portion of formerly recovered individuals along a range of previous samples is incorporated again to the susceptible subpopulation. The rate of loss of partial immunity of the considered range of previous samples may be, in general, distinct for the various samples. It is found that the endemic equilibrium point is not reachable in the transmission rate range of values, which makes the disease-free one to be globally asymptotically stable. The critical transmission rate which confers to only one of the equilibrium points the property of being asymptotically stable (respectively below or beyond its value) is linked to the unity basic reproduction number and makes both equilibrium points to be coincident. In parallel, the endemic equilibrium point is reachable and globally asymptotically stable in the range for which the disease-free equilibrium point is unstable. It is also discussed the relevance of both the vaccination effort and the re-susceptibility level in the modification of the disease-free equilibrium point compared to its reached component values in their absence. The influences of the limit control gain and equilibrium re-susceptibility level in the reached endemic state are also explicitly made viewable for their interpretation from the endemic equilibrium components. Some simulation examples are tested and discussed by using disease parameterizations of COVID-19.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 398
Author(s):  
Manuel De la Sen ◽  
Santiago Alonso-Quesada ◽  
Asier Ibeas ◽  
Raul Nistal

A new discrete susceptible-exposed-infectious-recovered (SEIR) epidemic model is presented subject to a feedback vaccination effort involving two doses. Both vaccination doses, which are subject to a non-necessarily identical effectiveness, are administrated by respecting a certain mutual delay interval, and their immunity effect is registered after a certain delay since the second dose. The delays and the efficacies of the doses are parameters, which can be fixed in the model for each concrete experimentation. The disease-free equilibrium point is characterized as well as its stability properties, while it is seen that no endemic equilibrium point exists. The exposed subpopulation is supposed to be infective eventually, under a distinct transmission rate of that of the infectious subpopulation. Some simulation examples are presented by using disease parameterizations of the COVID-19 pandemic under vaccination efforts requiring two doses.


2020 ◽  
Vol 1 (2) ◽  
pp. 71-80
Author(s):  
Anisa Fitra Dila Hubu ◽  
Novianita Achmad ◽  
Nurwan Nurwan

This study discusses the spread of measles in a mathematical model. Mathematical modeling is not only limited to the world of mathematics but can also be applied in the health sector. Measles is a disease with a high transmission rate. The spread of measles in this model was modified by adding the treated population and the treatment parameters of the exposed population. In this article, we examine the equilibrium points in the SMEIUR mathematical model and perform stability analysis and numerical simulations. In this study, two equilibrium points were obtained, namely the disease-free and endemic equilibrium point. After getting the equilibrium point, an analysis is carried out to find the stability of the model. Furthermore, the simulation produces a stable disease-free equilibrium point at conditions R01 and a stable endemic equilibrium point at conditions R01. In this study, a numerical simulation was carried out to see population dynamics by varying the parameter values. The simulation results show that to reduce the spread of measles, it is necessary to increase the rate of advanced immunization, the rate of the infected population undergoing treatment, and the proportion of individuals who are treated cured.


Author(s):  
Oluwafemi Temidayo J. ◽  
Azuaba E. ◽  
Lasisi N. O.

In this study, we analyzed the endemic equilibrium point of a malaria-hygiene mathematical model. We prove that the mathematical model is biological and meaningfully well-posed. We also compute the basic reproduction number using the next generation method. Stability analysis of the endemic equilibrium point show that the point is locally stable if reproduction number is greater that unity and globally stable by the Lasalle’s invariant principle. Numerical simulation to show the dynamics of the compartment at various hygiene rate was carried out.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 455 ◽  
Author(s):  
Zhe Yin ◽  
Yongguang Yu ◽  
Zhenzhen Lu

This paper is concerned with the stability of an age-structured susceptible–exposed– infective–recovered–susceptible (SEIRS) model with time delay. Firstly, the traveling wave solution of system can be obtained by using the method of characteristic. The existence and uniqueness of the continuous traveling wave solution is investigated under some hypotheses. Moreover, the age-structured SEIRS system is reduced to the nonlinear autonomous system of delay ODE using some insignificant simplifications. It is studied that the dimensionless indexes for the existence of one disease-free equilibrium point and one endemic equilibrium point of the model. Furthermore, the local stability for the disease-free equilibrium point and the endemic equilibrium point of the infection-induced disease model is established. Finally, some numerical simulations were carried out to illustrate our theoretical results.


2020 ◽  
Vol 24 (5) ◽  
pp. 917-922
Author(s):  
J. Andrawus ◽  
F.Y. Eguda ◽  
I.G. Usman ◽  
S.I. Maiwa ◽  
I.M. Dibal ◽  
...  

This paper presents a new mathematical model of a tuberculosis transmission dynamics incorporating first and second line treatment. We calculated a control reproduction number which plays a vital role in biomathematics. The model consists of two equilibrium points namely disease free equilibrium and endemic equilibrium point, it has been shown that the disease free equilibrium point was locally asymptotically stable if thecontrol reproduction number is less than one and also the endemic equilibrium point was locally asymptotically stable if the control reproduction number is greater than one. Numerical simulation was carried out which supported the analytical results. Keywords: Mathematical Model, Biomathematics, Reproduction Number, Disease Free Equilibrium, Endemic Equilibrium Point


2012 ◽  
Vol 05 (03) ◽  
pp. 1260004 ◽  
Author(s):  
HUI CAO ◽  
YANNI XIAO ◽  
YICANG ZHOU

Age and infection age have significant influence on the transmission of infectious diseases, such as HIV/AIDS and TB. A discrete SEIT model with age and infection age structures is formulated to investigate the dynamics of the disease spread. The basic reproduction number R0 is defined and used as the threshold parameter to characterize the disease extinction or persistence. It is shown that the disease-free equilibrium is globally stable if R0 < 1, and it is unstable if R0 > 1. When R0 > 1, there exists an endemic equilibrium, and the disease is uniformly persistent. The stability of the endemic equilibrium is investigated numerically.


2016 ◽  
Vol 5 (1) ◽  
pp. 23
Author(s):  
Endah Purwati ◽  
Sugiyanto Sugiyanto

Ebola is a deadly disease caused by a virus and is spread through direct contact with blood or body fluids such as urine, feces, breast milk, saliva and semen. In this case, direct contact means that the blood or body fluids of patients were directly touching the nose, eyes, mouth, or a wound someone open. In this paper examined two mathematical models SIRD (Susceptibles-Infected-Recovery-Deaths) the spread of the Ebola virus in the human population. Both the mathematical model SIRD on the spread of the Ebola virus is a model by Abdon A. and Emile F. D. G. and research development model. This study was conducted to determine the point of disease-free equilibrium and endemic equilibrium point and stability analysis of the dots, knowing the value of the basic reproduction number (R0) and a simulation model using Matlab software version 6.1.0.450. From the analysis of the two models, obtained the same point for disease-free equilibrium point with the stability of different points and different points for endemic equilibrium point with the stability of both the same point and the same value to the value of the basic reproduction number (R0). After simulating the model using Matlab software version 6.1.0.450, it can be seen changes in the behavior of the population at any time.


Sign in / Sign up

Export Citation Format

Share Document