scholarly journals A Single-Valued Extended Hesitant Fuzzy Score-Based Technique for Probabilistic Hesitant Fuzzy Multiple Criteria Decision-Making

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Bahram Farhadinia ◽  
Atefeh Taghavi

The probabilistic hesitant fuzzy set (PHFS) is a worthwhile extension of the hesitant fuzzy set (HFS) which allows people to improve their quantitative assessment with the corresponding probability. Recently, in order to address the issue of difficulty in aggregating decision makers’ opinions, a probability splitting algorithm has been developed that drives an efficient probabilistic-unification process of PHFSs. Adopting such a unification process allows decision makers to disregard the probability part in developing fruitful theories of comparison of PHFSs. By keeping this feature in mind, we try to introduce a class of score functions for the notion of the single-valued extended hesitant fuzzy set (SVEHFS) as a novel deformation of PHFS. Interestingly, a SVEHFS not only belongs to a less dimensional space compared to that of PHFSs but also the proposed SVEHFS-based score functions satisfy a number of interesting properties. Eventually, some case studies of multiple criteria decision-making (MCDM) techniques under the PHFS environment are provided to demonstrate the effectiveness of proposed SVEHFS-based score functions.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Luis Pérez-Domínguez ◽  
Luis Alberto Rodríguez-Picón ◽  
Alejandro Alvarado-Iniesta ◽  
David Luviano Cruz ◽  
Zeshui Xu

The multiobjective optimization on the basis of ratio analysis (MOORA) method captures diverse features such as the criteria and alternatives of appraising a multiple criteria decision-making (MCDM) problem. At the same time, the multiple criteria problem includes a set of decision makers with diverse expertise and preferences. In fact, the literature lists numerous approaches to aid in this problematic task of choosing the best alternative. Nevertheless, in the MCDM field, there is a challenge regarding intangible information which is commonly involved in multiple criteria decision-making problem; hence, it is substantial in order to advance beyond the research related to this field. Thus, the objective of this paper is to present a fused method between multiobjective optimization on the basis of ratio analysis and Pythagorean fuzzy sets for the choice of an alternative. Besides, multiobjective optimization on the basis of ratio analysis is utilized to choose the best alternatives. Finally, two decision-making problems are applied to illustrate the feasibility and practicality of the proposed method.



Symmetry ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 295 ◽  
Author(s):  
Rui Wang ◽  
Yanlai Li

To address the complex multiple criteria decision-making (MCDM) problems in practice, this article proposes the picture hesitant fuzzy set (PHFS) theory based on the picture fuzzy set and the hesitant fuzzy set. First, the concept of PHFS is put forward, and its operations are presented, simultaneously. Second, the generalized picture hesitant fuzzy weighted aggregation operators are developed, and some theorems and reduced operators of them are discussed. Third, the generalized picture hesitant fuzzy prioritized weighted aggregation operators are put forward to solve the MCDM problems that the related criteria are at different priorities. Fourth, two novel MCDM methods combined with the proposed operators are constructed to determine the best alternative in real life. Finally, two numerical examples and an application of web service selection are investigated to illustrate the effectiveness of the proposed methods. The sensitivity analysis shows that the different values of the parameter λ affect the ranking of alternatives, and the proposed operators are compared with several existing MCDM methods to illustrate their advantages.



2021 ◽  
pp. 1-12
Author(s):  
Muhammad Naeem ◽  
Muhammad Ali Khan ◽  
Saleem Abdullah ◽  
Muhammad Qiyas ◽  
Saifullah Khan

Probabilistic hesitant fuzzy Set (PHFs) is the most powerful and comprehensive idea to support more complexity than developed fuzzy set (FS) frameworks. In this paper, it can explain a novel, improved TOPSIS-based method for multi-criteria group decision-making (MCGDM) problem through the Probabilistic hesitant fuzzy environment, in which the weights of both experts and criteria are completely unknown. Firstly, we discuss the concept of PHFs, score functions and the basic operating laws of PHFs. In fact, to compute the unknown weight information, the generalized distance measure for PHFs was defined based on the Probabilistic hesitant fuzzy entropy measure. Second, MCGDM will be presented with the PHF information-based decision-making process.



2005 ◽  
Vol 13 (1) ◽  
pp. 23-56 ◽  
Author(s):  
Badredine Arfi

In this article I use linguistic fuzzy-set theory to analyze the process of decision making in politics. I first introduce a number of relevant elements of (numerical and linguistic) fuzzy-set theory that are needed to understand the terminology as well as to grasp the scope and depth of the approach. I then explicate a linguistic fuzzy-set approach (LFSA) to the process of decision making under conditions in which the decision makers are required to simultaneously satisfy multiple criteria. The LFSA approach is illustrated through a running (hypothetical) example of a situation in which state leaders need to decide how to combine trust and power to make a choice on security alignment.



2020 ◽  
Vol 26 (1) ◽  
pp. 103-134 ◽  
Author(s):  
Huchang Liao ◽  
Hongrun Zhang ◽  
Cheng Zhang ◽  
Xingli Wu ◽  
Abbas Mardani ◽  
...  

As a generalized form of both intuitionistic fuzzy set and Pythagorean fuzzy sets, the q-rung orthopair fuzzy set (q-ROFS) has strong ability to handle uncertain or imprecision decisionmaking problems. This paper aims to introduce a new multiple criteria decision making method based on the original gain and lost dominance score (GLDS) method for investment evaluation. To do so, we first propose a new distance measure of q-rung orthopair fuzzy numbers (q-ROFNs), which takes into account the hesitancy degree of q-ROFNs. Subsequently, two methods are developed to determine the weights of DMs and criteria, respectively. Next, the original GLDS method is improved from the aspects of dominance flows and order scores of alternatives to address the multiple criteria decision making problems with q-ROFS information. Finally, a case study concerning the investment evaluation of the BE angle capital is given to illustrate the applicability and superiority of the proposed method.





2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Zhi-Hui Li

In order to determine the membership of an element to a set owing to ambiguity between a few different values, the hesitant fuzzy set (HFS) has been proposed and widely diffused to deal with vagueness and uncertainty involved in the process of multiple criteria group decision making (MCGDM) problems. In this paper, we develop novel definitions of score function and distance measure for HFSs. Some examples are given to illustrate that the proposed definitions are more reasonable than the traditional ones. Furthermore, our study extends the MULTIMOORA (Multiple Objective Optimization on the basis of Ratio Analysis plus Full Multiplicative Form) method with HFSs. The proposed method thus provides the means for multiple criteria decision making (MCDM) regarding uncertain assessments. Utilization of hesitant fuzzy power aggregation operators also enables facilitating the process of MCGDM. A numerical example of software selection demonstrates the possibilities of application of the proposed method.



2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
M. Sarwar Sindhu ◽  
Tabasam Rashid ◽  
Agha Kashif ◽  
Juan Luis García Guirao

Probabilistic interval-valued hesitant fuzzy sets (PIVHFSs) are an extension of interval-valued hesitant fuzzy sets (IVHFSs) in which each hesitant interval value is considered along with its occurrence probability. These assigned probabilities give more details about the level of agreeness or disagreeness. PIVHFSs describe the belonging degrees in the form of interval along with probabilities and thereby provide more information and can help the decision makers (DMs) to obtain precise, rational, and consistent decision consequences than IVHFSs, as the correspondence of unpredictability and inaccuracy broadly presents in real life problems due to which experts are confused to assign the weights to the criteria. In order to cope with this problem, we construct the linear programming (LP) methodology to find the exact values of the weights for the criteria. Furthermore these weights are employed in the aggregation operators of PIVHFSs recently developed. Finally, the LP methodology and the actions are then applied on a certain multiple criteria decision making (MCDM) problem and a comparative analysis is given at the end.





Sign in / Sign up

Export Citation Format

Share Document