scholarly journals A Vibration Feature Extraction Method Based on Time-Domain Dimensional Parameters and Mahalanobis Distance

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Junjun Chen ◽  
Bing Xu ◽  
Xin Zhang

To accurately describe the characteristics of a signal, the feature parameters in time domain and frequency domain are usually extracted for characterization. However, the total number of feature parameters in time domain and frequency domain exceeds twenty, and all of the feature parameters are used for feature extraction, which will result in a large amount of data processing. For the purpose of using fewer feature parameters to accurately reflect the characteristics of the vibration signal, a simple but effective vibration feature extraction method combining time-domain dimensional parameters (TDDP) and Mahalanobis distance (MD) is proposed, i.e., TDDP-MD. In this method, ten time-domain dimensional parameters are selected to extract fault features, and the distance evaluation technique based on Mahalanobis distance criterion function is also introduced to calculate the feature vector, which can be used to classify different failure types. Finally, the proposed method is applied to fault diagnosis of rolling element bearings, and experimental analysis results show that the proposed method can recognize different failure types accurately and effectively with only ten time-domain dimensional parameters and a small quantity of training samples.

2021 ◽  
Vol 63 (8) ◽  
pp. 465-471
Author(s):  
Shang Zhiwu ◽  
Yu Yan ◽  
Geng Rui ◽  
Gao Maosheng ◽  
Li Wanxiang

Aiming at the local fault diagnosis of planetary gearbox gears, a feature extraction method based on improved dynamic time warping (IDTW) is proposed. As a calibration matching algorithm, the dynamic time warping method can detect the differences between a set of time-domain signals. This paper applies the method to fault diagnosis. The method is simpler and more intuitive than feature extraction methods in the frequency domain and the time-frequency domain, avoiding their limitations and disadvantages. Due to the shortcomings of complex calculation, singularity and poor robustness, the paper proposes an improved method. Finally, the method is verified by envelope spectral feature analysis and the local fault diagnosis of gears is realised.


2014 ◽  
Vol 530-531 ◽  
pp. 345-348
Author(s):  
Min Qiang Xu ◽  
Hai Yang Zhao ◽  
Jin Dong Wang

This paper presents a feature extraction method based on LMD and MSE for reciprocating compressor according to the strong nonstationarity, nonlinearity and features coupling characteristics of vibration signal. The vibration signal was decomposed into a set of PFs, and then multiscale entropy of the first several PFs were calculated as feature vectors with different scale factors. Based on the maximum of average Euclidean distances, the feature vectors which have the best divisibility were selected. The feature vectors of reciprocating compressor at different bearing clearance states were extracted using this method, and superiority of this method is verified by comparing with the results of sample entropy.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1319
Author(s):  
Haikun Shang ◽  
Junyan Xu ◽  
Yucai Li ◽  
Wei Lin ◽  
Jinjuan Wang

Effective diagnosis of vibration fault is of practical significance to ensure the safe and stable operation of power transformers. Aiming at the traditional problems of transformer vibration fault diagnosis, a novel feature extraction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and multi-scale dispersion entropy (MDE) was proposed. In this paper, CEEMDAN method is used to decompose the original transformer vibration signal. Additionally, then MDE is used to capture multi-scale fault features in the decomposed intrinsic mode functions (IMFs). Next, the principal component analysis (PCA) method is employed to reduce the feature dimension and extract the effective information in vibration signals. Finally, the simplified features are sent into density peak clustering (DPC) to get the fault diagnosis results. The experimental data analysis shows that CEEMDAN-MDE can effectively extract the information of the original vibration signals and DPC can accurately diagnose the types of transformer faults. By comparing different algorithms, the practicability and superiority of this proposed method are verified.


Author(s):  
Long Li ◽  
Jianfeng Xiao ◽  
Bin Wu ◽  
Mengge Zhou ◽  
Qian Wang

The development of power grid system not only increases voltage and capacity, but also increases power risk. This paper briefly introduces the feature extraction method of the vibration signal of high voltage circuit breaker and support vector machine (SVM) algorithm and then analyzed the high voltage circuit breaker in three states: normal operation, fixed screw loosening and falling of opening spring, using the SVM based on the above feature extraction method. The results showed that the accuracy and precision rates of fault identification of circuit breaker were the highest by using the wavelet packet energy entropy extraction features, the false alarm rate was the lowest, and the detection time was the shortest.


2014 ◽  
Vol 902 ◽  
pp. 370-377
Author(s):  
Guo Xin Wu ◽  
Yun Bo Zuo ◽  
Yan Hui Shi

Aiming at the safe operation of the wind turbine, a feature extraction method of vibration signal based on the principle of blind source separation was proposed. Blind source and the current state of fault signal was separated and predicated by Using historical data of wind turbine vibration signal as the observation noise, and then fault diagnosis signal mechanical operation was analyzed, the HMM/SVM series fault diagnosis models structure was proposed. By calculating the matching degree of unknown signal and wind power equipment in the state using HMM, the features for SVM was formed to achieve the finally discriminant. The experimental results showed that the fault diagnosis method can precisely and effectively complete the wind power equipment, higher than pure HMM or SVM diagnostic accuracy.


Sign in / Sign up

Export Citation Format

Share Document