scholarly journals Online Prediction of Ship Roll Motion in Waves Based on Auto-Moving Gird Search-Least Square Support Vector Machine

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chang-Zhou Xu ◽  
Zao-Jian Zou

A novel method based on auto-moving grid search-least square support vector machine (AGS-LSSVM) is proposed for online predicting ship roll motion in waves. To verify the method, simulation data are used, which are obtained by solving the second-order nonlinear differential equation of ship roll motion using the fourth-order Runge–Kutta method, while the Pierson–Moskowitz spectrum (P–M spectrum) is used to simulate the irregular waves. Combining the sliding time window with the least square support vector machine (LS-SVM), the samples in the time window are used to train the LS-SVM model, and the model hyperparameters are optimized online by the auto-moving grid search (AGS) method. The trained model is used to predict the roll motion in the next 30 seconds, and the prediction results are compared with the simulation data. It is shown that the AGS-LSSVM is an effective method for online predicting ship roll motion in waves.


Author(s):  
Narina Thakur ◽  
Deepti Mehrotra ◽  
Abhay Bansal ◽  
Manju Bala

Objective: Since the adequacy of Learning Objects (LO) is a dynamic concept and changes in its use, needs and evolution, it is important to consider the importance of LO in terms of time to assess its relevance as the main objective of the proposed research. Another goal is to increase the classification accuracy and precision. Methods: With existing IR and ranking algorithms, MAP optimization either does not lead to a comprehensively optimal solution or is expensive and time - consuming. Nevertheless, Support Vector Machine learning competently leads to a globally optimal solution. SVM is a powerful classifier method with its high classification accuracy and the Tilted time window based model is computationally efficient. Results: This paper proposes and implements the LO ranking and retrieval algorithm based on the Tilted Time window and the Support Vector Machine, which uses the merit of both methods. The proposed model is implemented for the NCBI dataset and MAT Lab. Conclusion: The experiments have been carried out on the NCBI dataset, and LO weights are assigned to be relevant and non - relevant for a given user query according to the Tilted Time series and the Cosine similarity score. Results showed that the model proposed has much better accuracy.



2016 ◽  
Vol 10 (5) ◽  
pp. 1145-1153 ◽  
Author(s):  
Whei-Min Lin ◽  
Ren-Fu Yang ◽  
Ming-Tang Tsai ◽  
Chia-Sheng Tu




2011 ◽  
Vol 130-134 ◽  
pp. 2047-2050 ◽  
Author(s):  
Hong Chun Qu ◽  
Xie Bin Ding

SVM(Support Vector Machine) is a new artificial intelligence methodolgy, basing on structural risk mininization principle, which has better generalization than the traditional machine learning and SVM shows powerfulability in learning with limited samples. To solve the problem of lack of engine fault samples, FLS-SVM theory, an improved SVM, which is a method is applied. 10 common engine faults are trained and recognized in the paper.The simulated datas are generated from PW4000-94 engine influence coefficient matrix at cruise, and the results show that the diagnostic accuracy of FLS-SVM is better than LS-SVM.



Sign in / Sign up

Export Citation Format

Share Document