scholarly journals Analytical Investigation of Noyes–Field Model for Time-Fractional Belousov–Zhabotinsky Reaction

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Mohammed Kbiri Alaoui ◽  
Rabia Fayyaz ◽  
Adnan Khan ◽  
Rasool Shah ◽  
Mohammed S. Abdo

In this article, we find the solution of time-fractional Belousov–Zhabotinskii reaction by implementing two well-known analytical techniques. The proposed methods are the modified form of the Adomian decomposition method and homotopy perturbation method with Yang transform. In Caputo manner, the fractional derivative is used. The solution we obtained is in the form of series which helps in investigating the analytical solution of the time-fractional Belousov–Zhabotinskii (B-Z) system. To verify the accuracy of the proposed methods, an illustrative example is taken, and through graphs, the solution is shown. Also, the fractional-order and integer-order solutions are compared with the help of graphs which are easy to understand. It has been verified that the solution obtained by using the given approaches has the desired rate of convergence to the exact solution. The proposed technique’s principal benefit is the low amount of calculations required. It can also be used to solve fractional-order physical problems in a variety of domains.

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1786
Author(s):  
Yanmei Cui ◽  
Nehad Ali Shah ◽  
Kunju Shi ◽  
Salman Saleem ◽  
Jae Dong Chung

This paper is related to the fractional view analysis of coupled Burgers equations, using innovative analytical techniques. The fractional analysis of the proposed problems has been done in terms of the Caputo-operator sense. In the current methodologies, first, we applied the Elzaki transform to the targeted problem. The Adomian decomposition method and homotopy perturbation method are then implemented to obtain the series form solution. After applying the inverse transform, the desire analytical solution is achieved. The suggested procedures are verified through specific examples of the fractional Burgers couple systems. The current methods are found to be effective methods having a close resemblance with the actual solutions. The proposed techniques have less computational cost and a higher rate of convergence. The proposed techniques are, therefore, beneficial to solve other systems of fractional-order problems.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 426 ◽  
Author(s):  
Hassan Khan ◽  
Rasool Shah ◽  
Poom Kumam ◽  
Dumitru Baleanu ◽  
Muhammad Arif

In the present article, fractional-order telegraph equations are solved by using the Laplace-Adomian decomposition method. The Caputo operator is used to define the fractional derivative. Series form solutions are obtained for fractional-order telegraph equations by using the proposed method. Some numerical examples are presented to understand the procedure of the Laplace-Adomian decomposition method. As the Laplace-Adomian decomposition procedure has shown the least volume of calculations and high rate of convergence compared to other analytical techniques, the Laplace-Adomian decomposition method is considered to be one of the best analytical techniques for solving fractional-order, non-linear partial differential equations—particularly the fractional-order telegraph equation.


2019 ◽  
Vol 10 (1) ◽  
pp. 122 ◽  
Author(s):  
Hassan Khan ◽  
Umar Farooq ◽  
Rasool Shah ◽  
Dumitru Baleanu ◽  
Poom Kumam ◽  
...  

In this article, a new analytical technique based on an innovative transformation is used to solve (2+time fractional-order) dimensional physical models. The proposed method is the hybrid methodology of Shehu transformation along with Adomian decomposition method. The series form solution is obtained by using the suggested method which provides the desired rate of convergence. Some numerical examples are solved by using the proposed method. The solutions of the targeted problems are represented by graphs which have confirmed closed contact between the exact and obtained solutions of the problems. Based on the novelty and straightforward implementation of the method, it is considered to be one of the best analytical techniques to solve linear and non-linear fractional partial differential equations.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fatemah Mofarreh ◽  
A. M. Zidan ◽  
Muhammad Naeem ◽  
Rasool Shah ◽  
Roman Ullah ◽  
...  

This paper investigates a modified analytical method called the Adomian decomposition transform method for solving fractional-order heat equations with the help of the Caputo-Fabrizio operator. The Laplace transform and the Adomian decomposition method are implemented to obtain the result of the given models. The validity of the proposed method is verified by considering some numerical problems. The solution achieved has shown that the better accuracy of the suggested method. Furthermore, due to the straightforward implementation, the proposed method can solve other nonlinear fractional-order problems.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Muhammad Naeem ◽  
Omar Fouad Azhar ◽  
Ahmed M. Zidan ◽  
Kamsing Nonlaopon ◽  
Rasool Shah

This research article is dedicated to solving fractional-order parabolic equations, using an innovative analytical technique. The Adomian decomposition method is well supported by Elzaki transformation to establish closed-form solutions for targeted problems. The procedure is simple, attractive, and preferred over other methods because it provides a closed-form solution for the given problems. The solution graphs are plotted for both integer and fractional-order, which shows that the obtained results are in good contact with problems’ exact solution. It is also observed that the solution of fractional-order problems is convergent to the integer-order problem. Moreover, the validity of the proposed method is analyzed by considering some numerical examples. The theory of the suggested approach is fully supported by the obtained results for the given problems. In conclusion, the present method is a straightforward and accurate analytical technique that can solve other fractional-order partial differential equations.


2018 ◽  
Vol 10 (2) ◽  
pp. 166
Author(s):  
Moussa BAGAYOGO ◽  
Youssouf PARE ◽  
Youssouf MINOUNGOU

In this study, we consider the wave equation with cubic damping with its initial conditions. Homotopy Perturbation Method (HPM), Regular Pertubation Method (RPM) and Adomian decomposition Method (ADM) are applied to this equation. Then, the solution yielding the given initial conditions is gained. Finally, the solutions obtained by each method are compared.


Author(s):  
Sekson Sirisubtawee ◽  
Supaporn Kaewta

We apply new modified recursion schemes obtained by the Adomian decomposition method (ADM) to analytically solve specific types of two-point boundary value problems for nonlinear fractional order ordinary and partial differential equations. The new modified recursion schemes, which sometimes utilize the technique of Duan’s convergence parameter, are derived using the Duan-Rach modified ADM. The Duan-Rach modified ADM employs all of the given boundary conditions to compute the remaining unknown constants of integration, which are then embedded in the integral solution form before constructing recursion schemes for the solution components. New modified recursion schemes obtained by the method are generated in order to analytically solve nonlinear fractional order boundary value problems with a variety of two-point boundary conditions such as Robin and separated boundary conditions. Some numerical examples of such problems are demonstrated graphically. In addition, the maximal errors (MEn) or the error remainder functions (ERn(x)) of each problem are calculated.


2022 ◽  
Vol 6 (1) ◽  
pp. 32
Author(s):  
Hegagi Mohamed Ali ◽  
Hijaz Ahmad ◽  
Sameh Askar ◽  
Ismail Gad Ameen

In this work, we present a modified generalized Mittag–Leffler function method (MGMLFM) and Laplace Adomian decomposition method (LADM) to get an analytic-approximate solution for nonlinear systems of partial differential equations (PDEs) of fractional-order in the Caputo derivative. We apply the MGMLFM and LADM on systems of nonlinear time-fractional PDEs. Precisely, we consider some important fractional-order nonlinear systems, namely Broer–Kaup (BK) and Burgers, which have found major significance because they arise in many physical applications such as shock wave, wave processes, vorticity transport, dispersal in porous media, and hydrodynamic turbulence. The analysis of these methods is implemented on the BK, Burgers systems and solutions have been offered in a simple formula. We show our results in figures and tables to demonstrate the efficiency and reliability of the used methods. Furthermore, our outcome converges rapidly to the given exact solutions.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Rasool Shah ◽  
Hassan Khan ◽  
Dumitru Baleanu ◽  
Poom Kumam ◽  
Muhammad Arif

AbstractIn this article, an efficient analytical technique, called Laplace–Adomian decomposition method, is used to obtain the solution of fractional Zakharov– Kuznetsov equations. The fractional derivatives are described in terms of Caputo sense. The solution of the suggested technique is represented in a series form of Adomian components, which is convergent to the exact solution of the given problems. Furthermore, the results of the present method have shown close relations with the exact approaches of the investigated problems. Illustrative examples are discussed, showing the validity of the current method. The attractive and straightforward procedure of the present method suggests that this method can easily be extended for the solutions of other nonlinear fractional-order partial differential equations.


2020 ◽  
Vol 23 (6) ◽  
pp. 1783-1796
Author(s):  
Neelam Singha

Abstract In this article, we aim to analyze a mathematical model of tumor growth as a problem of fractional optimal control. The considered fractional-order model describes the interaction of effector-immune cells and tumor cells, including combined chemo-immunotherapy. We deduce the necessary optimality conditions together with implementing the Adomian decomposition method on the suggested fractional-order optimal control problem. The key motive is to perform numerical simulations that shall facilitate us in understanding the behavior of state and control variables. Further, the graphical interpretation of solutions effectively validates the applicability of the present analysis to investigate the growth of cancer cells in the presence of medical treatment.


Sign in / Sign up

Export Citation Format

Share Document