scholarly journals UAV Swarm Confrontation Using Hierarchical Multiagent Reinforcement Learning

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Baolai Wang ◽  
Shengang Li ◽  
Xianzhong Gao ◽  
Tao Xie

With the development of unmanned aerial vehicle (UAV) technology, UAV swarm confrontation has attracted many researchers’ attention. However, the situation faced by the UAV swarm has substantial uncertainty and dynamic variability. The state space and action space increase exponentially with the number of UAVs, so that autonomous decision-making becomes a difficult problem in the confrontation environment. In this paper, a multiagent reinforcement learning method with macro action and human expertise is proposed for autonomous decision-making of UAVs. In the proposed approach, UAV swarm is modeled as a large multiagent system (MAS) with an individual UAV as an agent, and the sequential decision-making problem in swarm confrontation is modeled as a Markov decision process. Agents in the proposed method are trained based on the macro actions, where sparse and delayed rewards, large state space, and action space are effectively overcome. The key to the success of this method is the generation of the macro actions that allow the high-level policy to find a near-optimal solution. In this paper, we further leverage human expertise to design a set of good macro actions. Extensive empirical experiments in our constructed swarm confrontation environment show that our method performs better than the other algorithms.

Author(s):  
Junfeng Zhang ◽  
Qing Xue

In a tactical wargame, the decisions of the artificial intelligence (AI) commander are critical to the final combat result. Due to the existence of fog-of-war, AI commanders are faced with unknown and invisible information on the battlefield and lack of understanding of the situation, and it is difficult to make appropriate tactical strategies. The traditional knowledge rule-based decision-making method lacks flexibility and autonomy. How to make flexible and autonomous decision-making when facing complex battlefield situations is a difficult problem. This paper aims to solve the decision-making problem of the AI commander by using the deep reinforcement learning (DRL) method. We develop a tactical wargame as the research environment, which contains built-in script AI and supports the machine–machine combat mode. On this basis, an end-to-end actor–critic framework for commander decision making based on the convolutional neural network is designed to represent the battlefield situation and the reinforcement learning method is used to try different tactical strategies. Finally, we carry out a combat experiment between a DRL-based agent and a rule-based agent in a jungle terrain scenario. The result shows that the AI commander who adopts the actor–critic method successfully learns how to get a higher score in the tactical wargame, and the DRL-based agent has a higher winning ratio than the rule-based agent.


Author(s):  
Ming-Sheng Ying ◽  
Yuan Feng ◽  
Sheng-Gang Ying

AbstractMarkov decision process (MDP) offers a general framework for modelling sequential decision making where outcomes are random. In particular, it serves as a mathematical framework for reinforcement learning. This paper introduces an extension of MDP, namely quantum MDP (qMDP), that can serve as a mathematical model of decision making about quantum systems. We develop dynamic programming algorithms for policy evaluation and finding optimal policies for qMDPs in the case of finite-horizon. The results obtained in this paper provide some useful mathematical tools for reinforcement learning techniques applied to the quantum world.


Author(s):  
Rey Pocius ◽  
Lawrence Neal ◽  
Alan Fern

Commonly used sequential decision making tasks such as the games in the Arcade Learning Environment (ALE) provide rich observation spaces suitable for deep reinforcement learning. However, they consist mostly of low-level control tasks which are of limited use for the development of explainable artificial intelligence(XAI) due to the fine temporal resolution of the tasks. Many of these domains also lack built-in high level abstractions and symbols. Existing tasks that provide for both strategic decision-making and rich observation spaces are either difficult to simulate or are intractable. We provide a set of new strategic decision-making tasks specialized for the development and evaluation of explainable AI methods, built as constrained mini-games within the StarCraft II Learning Environment.


Author(s):  
Daoming Lyu ◽  
Fangkai Yang ◽  
Bo Liu ◽  
Daesub Yoon

Deep reinforcement learning (DRL) has gained great success by learning directly from high-dimensional sensory inputs, yet is notorious for the lack of interpretability. Interpretability of the subtasks is critical in hierarchical decision-making as it increases the transparency of black-box-style DRL approach and helps the RL practitioners to understand the high-level behavior of the system better. In this paper, we introduce symbolic planning into DRL and propose a framework of Symbolic Deep Reinforcement Learning (SDRL) that can handle both high-dimensional sensory inputs and symbolic planning. The task-level interpretability is enabled by relating symbolic actions to options. This framework features a planner – controller – meta-controller architecture, which takes charge of subtask scheduling, data-driven subtask learning, and subtask evaluation, respectively. The three components cross-fertilize each other and eventually converge to an optimal symbolic plan along with the learned subtasks, bringing together the advantages of long-term planning capability with symbolic knowledge and end-to-end reinforcement learning directly from a high-dimensional sensory input. Experimental results validate the interpretability of subtasks, along with improved data efficiency compared with state-of-the-art approaches.


2017 ◽  
Vol 29 (12) ◽  
pp. 2103-2113 ◽  
Author(s):  
Samuel J. Gershman ◽  
Jimmy Zhou ◽  
Cody Kommers

Imagination enables us not only to transcend reality but also to learn about it. In the context of reinforcement learning, an agent can rationally update its value estimates by simulating an internal model of the environment, provided that the model is accurate. In a series of sequential decision-making experiments, we investigated the impact of imaginative simulation on subsequent decisions. We found that imagination can cause people to pursue imagined paths, even when these paths are suboptimal. This bias is systematically related to participants' optimism about how much reward they expect to receive along imagined paths; providing feedback strongly attenuates the effect. The imagination effect can be captured by a reinforcement learning model that includes a bonus added onto imagined rewards. Using fMRI, we show that a network of regions associated with valuation is predictive of the imagination effect. These results suggest that imagination, although a powerful tool for learning, is also susceptible to motivational biases.


2013 ◽  
Vol 48 ◽  
pp. 67-113 ◽  
Author(s):  
D. M. Roijers ◽  
P. Vamplew ◽  
S. Whiteson ◽  
R. Dazeley

Sequential decision-making problems with multiple objectives arise naturally in practice and pose unique challenges for research in decision-theoretic planning and learning, which has largely focused on single-objective settings. This article surveys algorithms designed for sequential decision-making problems with multiple objectives. Though there is a growing body of literature on this subject, little of it makes explicit under what circumstances special methods are needed to solve multi-objective problems. Therefore, we identify three distinct scenarios in which converting such a problem to a single-objective one is impossible, infeasible, or undesirable. Furthermore, we propose a taxonomy that classifies multi-objective methods according to the applicable scenario, the nature of the scalarization function (which projects multi-objective values to scalar ones), and the type of policies considered. We show how these factors determine the nature of an optimal solution, which can be a single policy, a convex hull, or a Pareto front. Using this taxonomy, we survey the literature on multi-objective methods for planning and learning. Finally, we discuss key applications of such methods and outline opportunities for future work.


Author(s):  
Dongliang He ◽  
Xiang Zhao ◽  
Jizhou Huang ◽  
Fu Li ◽  
Xiao Liu ◽  
...  

The task of video grounding, which temporally localizes a natural language description in a video, plays an important role in understanding videos. Existing studies have adopted strategies of sliding window over the entire video or exhaustively ranking all possible clip-sentence pairs in a presegmented video, which inevitably suffer from exhaustively enumerated candidates. To alleviate this problem, we formulate this task as a problem of sequential decision making by learning an agent which regulates the temporal grounding boundaries progressively based on its policy. Specifically, we propose a reinforcement learning based framework improved by multi-task learning and it shows steady performance gains by considering additional supervised boundary information during training. Our proposed framework achieves state-of-the-art performance on ActivityNet’18 DenseCaption dataset (Krishna et al. 2017) and Charades-STA dataset (Sigurdsson et al. 2016; Gao et al. 2017) while observing only 10 or less clips per video.


Sign in / Sign up

Export Citation Format

Share Document