uav swarm
Recently Published Documents


TOTAL DOCUMENTS

292
(FIVE YEARS 216)

H-INDEX

14
(FIVE YEARS 6)

2022 ◽  
Vol 2022 ◽  
pp. 1-22
Author(s):  
Xiaoyan Gu ◽  
Feng He ◽  
Rongwei Wang ◽  
Liang Chen

In the unmanned aerial vehicle (UAV) swarm combat system, multiple UAVs’ collaborative operations can solve the bottleneck of the limited capability of a single UAV when they carry out complicated missions in complex combat scenarios. As one of the critical technologies of UAV collaborative operation, the mobility model is the basic infrastructure that plays an important role for UAV networking, routing, and task scheduling, especially in high dynamic and real-time scenarios. Focused on real-time guarantee and complex mission cooperative execution, a multilevel reference node mobility model based on the reference node strategy, namely, the ML-RNGM model, is proposed. In this model, the task decomposition and task correlation of UAV cluster execution are realized by using the multilayer task scheduling model. Based on the gravity model of spatial interaction and the correlation between tasks, the reference node selection algorithm is proposed to select the appropriate reference node in the process of node movement. This model can improve the real-time performance of individual tasks and the overall mission group carried out by UAVs. Meanwhile, this model can enhance the connectivity between UAVs when they are performing the same mission group. Finally, OMNeT++ is used to simulate the ML-RNGM model with three experiments, including the different number of nodes and clusters. Within the three experiments, the ML-RNGM model is compared with the random class mobility model, the reference class mobility model, and the associated class mobility model for the network connectivity rate, the average end-to-end delay, and the overhead caused by algorithms. The experimental results show that the ML-RNGM model achieves an obvious improvement in network connectivity and real-time performance for missions and tasks.


2022 ◽  
Vol 12 (2) ◽  
pp. 535
Author(s):  
Wenbo Suo ◽  
Mengyang Wang ◽  
Dong Zhang ◽  
Zhongjun Qu ◽  
Lei Yu

The formation control technology of the unmanned aerial vehicle (UAV) swarm is a current research hotspot, and formation switching and formation obstacle avoidance are vital technologies. Aiming at the problem of formation control of fixed-wing UAVs in distributed ad hoc networks, this paper proposed a route-based formation switching and obstacle avoidance method. First, the consistency theory was used to design the UAV swarm formation control protocol. According to the agreement, the self-organized UAV swarm could obtain the formation waypoint according to the current position information, and then follow the corresponding rules to design the waypoint to fly around and arrive at the formation waypoint at the same time to achieve formation switching. Secondly, the formation of the obstacle avoidance channel was obtained by combining the geometric method and an intelligent path search algorithm. Then, the UAV swarm was divided into multiple smaller formations to achieve the formation obstacle avoidance. Finally, the abnormal conditions during the flight were handled. The simulation results showed that the formation control technology based on distributed ad hoc network was reliable and straightforward, easy to implement, robust in versatility, and helpful to deal with the communication anomalies and flight anomalies with variable topology.


2022 ◽  
pp. 1-1
Author(s):  
Yuhan Li ◽  
Maozhong Fu ◽  
Haixin Sun ◽  
Zhenmiao Deng ◽  
Yunjian Zhang

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Baolai Wang ◽  
Shengang Li ◽  
Xianzhong Gao ◽  
Tao Xie

With the development of unmanned aerial vehicle (UAV) technology, UAV swarm confrontation has attracted many researchers’ attention. However, the situation faced by the UAV swarm has substantial uncertainty and dynamic variability. The state space and action space increase exponentially with the number of UAVs, so that autonomous decision-making becomes a difficult problem in the confrontation environment. In this paper, a multiagent reinforcement learning method with macro action and human expertise is proposed for autonomous decision-making of UAVs. In the proposed approach, UAV swarm is modeled as a large multiagent system (MAS) with an individual UAV as an agent, and the sequential decision-making problem in swarm confrontation is modeled as a Markov decision process. Agents in the proposed method are trained based on the macro actions, where sparse and delayed rewards, large state space, and action space are effectively overcome. The key to the success of this method is the generation of the macro actions that allow the high-level policy to find a near-optimal solution. In this paper, we further leverage human expertise to design a set of good macro actions. Extensive empirical experiments in our constructed swarm confrontation environment show that our method performs better than the other algorithms.


2021 ◽  
Vol 11 (24) ◽  
pp. 11996
Author(s):  
Yingtong Lu ◽  
Yaofei Ma ◽  
Jiangyun Wang

The effectiveness of the Wolf Pack Algorithm (WPA) in high-dimensional discrete optimization problems has been verified in previous studies; however, it usually takes too long to obtain the best solution. This paper proposes the Multi-Population Parallel Wolf Pack Algorithm (MPPWPA), in which the size of the wolf population is reduced by dividing the population into multiple sub-populations that optimize independently at the same time. Using the approximate average division method, the population is divided into multiple equal mass sub-populations whose better individuals constitute an elite sub-population. Through the elite-mass population distribution, those better individuals are optimized twice by the elite sub-population and mass sub-populations, which can accelerate the convergence. In order to maintain the population diversity, population pretreatment is proposed. The sub-populations migrate according to a constant migration probability and the migration of sub-populations are equivalent to the re-division of the confluent population. Finally, the proposed algorithm is carried out in a synchronous parallel system. Through the simulation experiments on the task assignment of the UAV swarm in three scenarios whose dimensions of solution space are 8, 30 and 150, the MPPWPA is verified as being effective in improving the optimization performance.


2021 ◽  
Vol 32 (6) ◽  
pp. 1463-1476
Author(s):  
Hu Jinqiang ◽  
Wu Husheng ◽  
Zhan Renjun ◽  
Menassel Rafik ◽  
Zhou Xuanwu

2021 ◽  
Author(s):  
Duo Qi ◽  
Jiaqiang Zhang ◽  
Xiaolong Liang ◽  
Zhe Li ◽  
Jialiang Zuo ◽  
...  
Keyword(s):  

2021 ◽  
pp. 369-379
Author(s):  
Duo Qi ◽  
Xiao-long Liang ◽  
Zhe Li ◽  
Jia-qiang Zhang ◽  
Peng-fei Lei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document