scholarly journals A Convolutional Neural Network for Automatic Tooth Numbering in Panoramic Images

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
María Prados-Privado ◽  
Javier García Villalón ◽  
Antonio Blázquez Torres ◽  
Carlos Hugo Martínez-Martínez ◽  
Carlos Ivorra

Analysis of dental radiographs and images is an important and common part of the diagnostic process in daily clinical practice. During the diagnostic process, the dentist must interpret, among others, tooth numbering. This study is aimed at proposing a convolutional neural network (CNN) that performs this task automatically for panoramic radiographs. A total of 8,000 panoramic images were categorized by two experts with more than three years of experience in general dentistry. The neural network consists of two main layers: object detection and classification, which is the support of the previous one and a transfer learning to improve computing time and precision. A Matterport Mask RCNN was employed in the object detection. A ResNet101 was employed in the classification layer. The neural model achieved a total loss of 6.17% (accuracy of 93.83%). The architecture of the model achieved an accuracy of 99.24% in tooth detection and 93.83% in numbering teeth with different oral health conditions.

2021 ◽  
Vol 10 (6) ◽  
pp. 1186
Author(s):  
María Prados-Privado ◽  
Javier García Villalón ◽  
Antonio Blázquez Torres ◽  
Carlos Hugo Martínez-Martínez ◽  
Carlos Ivorra

Dental radiography plays an important role in clinical diagnosis, treatment and making decisions. In recent years, efforts have been made on developing techniques to detect objects in images. The aim of this study was to detect the absence or presence of teeth using an effective convolutional neural network, which reduces calculation times and has success rates greater than 95%. A total of 8000 dental panoramic images were collected. Each image and each tooth was categorized, independently and manually, by two experts with more than three years of experience in general dentistry. The neural network used consists of two main layers: object detection and classification, which is the support of the previous one. A Matterport Mask RCNN was employed in the object detection. A ResNet (Atrous Convolution) was employed in the classification layer. The neural model achieved a total loss of 0.76% (accuracy of 99.24%). The architecture used in the present study returned an almost perfect accuracy in detecting teeth on images from different devices and different pathologies and ages.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 171461-171470
Author(s):  
Dianwei Wang ◽  
Yanhui He ◽  
Ying Liu ◽  
Daxiang Li ◽  
Shiqian Wu ◽  
...  

2020 ◽  
Vol 17 (8) ◽  
pp. 3478-3483
Author(s):  
V. Sravan Chowdary ◽  
G. Penchala Sai Teja ◽  
D. Mounesh ◽  
G. Manideep ◽  
C. T. Manimegalai

Road injuries are a big drawback in society for a few time currently. Ignoring sign boards while moving on roads has significantly become a major cause for road accidents. Thus we came up with an approach to face this issue by detecting the sign board and recognition of sign board. At this moment there are several deep learning models for object detection using totally different algorithms like RCNN, faster RCNN, SPP-net, etc. We prefer to use Yolo-3, which improves the speed and precision of object detection. This algorithm will increase the accuracy by utilizing residual units, skip connections and up-sampling. This algorithm uses a framework named Dark-net. This framework is intended specifically to create the neural network for training the Yolo algorithm. To thoroughly detect the sign board, we used this algorithm.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199332
Author(s):  
Xintao Ding ◽  
Boquan Li ◽  
Jinbao Wang

Indoor object detection is a very demanding and important task for robot applications. Object knowledge, such as two-dimensional (2D) shape and depth information, may be helpful for detection. In this article, we focus on region-based convolutional neural network (CNN) detector and propose a geometric property-based Faster R-CNN method (GP-Faster) for indoor object detection. GP-Faster incorporates geometric property in Faster R-CNN to improve the detection performance. In detail, we first use mesh grids that are the intersections of direct and inverse proportion functions to generate appropriate anchors for indoor objects. After the anchors are regressed to the regions of interest produced by a region proposal network (RPN-RoIs), we then use 2D geometric constraints to refine the RPN-RoIs, in which the 2D constraint of every classification is a convex hull region enclosing the width and height coordinates of the ground-truth boxes on the training set. Comparison experiments are implemented on two indoor datasets SUN2012 and NYUv2. Since the depth information is available in NYUv2, we involve depth constraints in GP-Faster and propose 3D geometric property-based Faster R-CNN (DGP-Faster) on NYUv2. The experimental results show that both GP-Faster and DGP-Faster increase the performance of the mean average precision.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1737
Author(s):  
Wooseop Lee ◽  
Min-Hee Kang ◽  
Jaein Song ◽  
Keeyeon Hwang

As automated vehicles have been considered one of the important trends in intelligent transportation systems, various research is being conducted to enhance their safety. In particular, the importance of technologies for the design of preventive automated driving systems, such as detection of surrounding objects and estimation of distance between vehicles. Object detection is mainly performed through cameras and LiDAR, but due to the cost and limits of LiDAR’s recognition distance, the need to improve Camera recognition technique, which is relatively convenient for commercialization, is increasing. This study learned convolutional neural network (CNN)-based faster regions with CNN (Faster R-CNN) and You Only Look Once (YOLO) V2 to improve the recognition techniques of vehicle-mounted monocular cameras for the design of preventive automated driving systems, recognizing surrounding vehicles in black box highway driving videos and estimating distances from surrounding vehicles through more suitable models for automated driving systems. Moreover, we learned the PASCAL visual object classes (VOC) dataset for model comparison. Faster R-CNN showed similar accuracy, with a mean average precision (mAP) of 76.4 to YOLO with a mAP of 78.6, but with a Frame Per Second (FPS) of 5, showing slower processing speed than YOLO V2 with an FPS of 40, and a Faster R-CNN, which we had difficulty detecting. As a result, YOLO V2, which shows better performance in accuracy and processing speed, was determined to be a more suitable model for automated driving systems, further progressing in estimating the distance between vehicles. For distance estimation, we conducted coordinate value conversion through camera calibration and perspective transform, set the threshold to 0.7, and performed object detection and distance estimation, showing more than 80% accuracy for near-distance vehicles. Through this study, it is believed that it will be able to help prevent accidents in automated vehicles, and it is expected that additional research will provide various accident prevention alternatives such as calculating and securing appropriate safety distances, depending on the vehicle types.


Author(s):  
Zhiyong Gao ◽  
Jianhong Xiang

Background: While detecting the object directly from the 3D point cloud, the natural 3D patterns and invariance of 3D data are often obscure. Objective: In this work, we aimed at studying the 3D object detection from discrete, disordered and sparse 3D point clouds. Methods: The CNN is composed of the frustum sequence module, 3D instance segmentation module S-NET, 3D point cloud transformation module T-NET, and 3D boundary box estimation module E-NET. The search space of the object is determined by the frustum sequence module. The instance segmentation of the point cloud is performed by the 3D instance segmentation module. The 3D coordinates of the object are confirmed by the transformation module and the 3D bounding box estimation module. Results: Evaluated on KITTI benchmark dataset, our method outperforms the state of the art by remarkable margins while having real-time capability. Conclusion: We achieve real-time 3D object detection by proposing an improved convolutional neural network (CNN) based on image-driven point clouds.


Author(s):  
Hongguo Su ◽  
Mingyuan Zhang ◽  
Shengyuan Li ◽  
Xuefeng Zhao

In the last couple of years, advancements in the deep learning, especially in convolutional neural networks, proved to be a boon for the image classification and recognition tasks. One of the important practical applications of object detection and image classification can be for security enhancement. If dangerous objects or scenes can be identified automatically, then a lot of accidents can be prevented. For this purpose, in this paper we made use of state-of-the-art implementation of Faster Region-based Convolutional Neural Network (Faster R-CNN) based on the monitoring video of hoisting sites to train a model to detect the dangerous object and the worker. By extracting the locations of them, object-human interactions during hoisting, mainly for changes in their spatial location relationship, can be understood whereby estimating whether the scene is safe or dangerous. Experimental results showed that the pre-trained model achieved good performance with a high mean average precision of 97.66% on object detection and the proposed method fulfilled the goal of dangerous scenes recognition perfectly.


Sign in / Sign up

Export Citation Format

Share Document