scholarly journals Optimization of Damage Equivalent Accelerated Test Spectrum Derivation Using Multiple Non-Gaussian Vibration Data

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Fei Xu ◽  
Kjell Ahlin ◽  
Binyi Wang

The response spectra are widely used in the damage assessment of non-Gaussian random vibration environments and the derivation of damage equivalent accelerated test spectrum. The effectiveness of the latter is strongly affected by modal parameter uncertainties, multiple field data processing, and the nonsmooth shape of the derived power spectral density (PSD). Optimization of accelerated test spectrum derivation based on dynamic parameter selection and iterative update of spectrum envelope is presented in this paper. The extreme response spectrum (ERS) envelope of the field data is firstly taken as the limiting spectrum, and the corresponding relationship between damping coefficient, fatigue exponent, and damage equivalent PSD under different test times is constructed to achieve the dynamic selection of uncertain parameters in the response spectrum model. Then, an iterative update model based on the weighted sum of fatigue damage spectrum (FDS) error is presented to reduce the error introduced by the nonsmooth shape of the derived PSD. The case study shows that undertest can be effectively avoided by the dynamic selection of model parameters. The weighted error is reduced from 80.1% to 7.5% after 7 iterations. Particularly, the error is close to 0 within the peak and valley frequency band.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fei Xu ◽  
Chuanri Li ◽  
Tongmin Jiang

Gaussian signal is produced by ordinary random vibration controllers to test the products in the laboratory, while the field data is usually non-Gaussian. Two methodologies are presented in this paper for shaker simulation of wind-induced non-Gaussian vibration. The first methodology synthesizes the non-Gaussian signal offline and replicates it on the shaker in the Time Waveform Replication (TWR) mode. A new synthesis method is used to model the non-Gaussian signal as a Gaussian signal multiplied by an amplitude modulation function (AMF). A case study is presented to show that the synthesized non-Gaussian signal has the same power spectral density (PSD), probability density function (PDF), and loading cycle distribution (LCD) as the field data. The second methodology derives a damage equivalent Gaussian signal from the non-Gaussian signal based on the fatigue damage spectrum (FDS) and the extreme response spectrum (ERS) and reproduces it on the shaker in the closed-loop frequency domain control mode. The PSD level and the duration time of the derived Gaussian signal can be manipulated for accelerated testing purpose. A case study is presented to show that the derived PSD matches the damage potential of the non-Gaussian environment for both fatigue and peak response.


2000 ◽  
Vol 11 (1) ◽  
pp. 73-81 ◽  
Author(s):  
V. Subramaniam ◽  
G. K. Lee ◽  
G. S. Hong ◽  
Y. S. Wong ◽  
T. Ramesh

Geophysics ◽  
2003 ◽  
Vol 68 (4) ◽  
pp. 1211-1223 ◽  
Author(s):  
Haoping Huang ◽  
Douglas C. Fraser

Inversion of airborne electromagnetic (EM) data for a layered earth has been commonly performed under the assumption that the magnetic permeability of the layers is the same as that of free space. The resistivity inverted from helicopter EM data in this way is not reliable in highly magnetic areas because magnetic polarization currents occur in addition to conduction currents, causing the inverted resistivity to be erroneously high. A new algorithm for inverting for the resistivity, magnetic permeability, and thickness of a layered model has been developed for a magnetic conductive layered earth. It is based on traditional inversion methodologies for solving nonlinear inverse problems and minimizes an objective function subject to fitting the data in a least‐squares sense. Studies using synthetic helicopter EM data indicate that the inversion technique is reasonably dependable and provides fast convergence. When six synthetic in‐phase and quadrature data from three frequencies are used, the model parameters for two‐ and three‐layer models are estimated to within a few percent of their true values after several iterations. The analysis of partial derivatives with respect to the model parameters contributes to a better understanding of the relative importance of the model parameters and the reliability of their determination. The inversion algorithm is tested on field data obtained with a Dighem helicopter EM system at Mt. Milligan, British Columbia, Canada. The output magnetic susceptibility‐depth section compares favorably with that of Zhang and Oldenburg who inverted for the susceptibility on the assumption that the resistivity distribution was known.


Sign in / Sign up

Export Citation Format

Share Document