scholarly journals An Analytical Method for Parameter Interpretation of Fracture Networks in Shale Gas Reservoirs considering Uneven Support of Fractures

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shijun Huang ◽  
Jiaojiao Zhang ◽  
Sidong Fang ◽  
Xifeng Wang

In shale gas reservoirs, the production data analysis method is widely used to invert reservoir and fracture parameter, and productivity prediction. Compared with numerical models and semianalytical models, which have high computational cost, the analytical model is mostly used in the production data analysis method to characterize the complex fracture network formed after fracturing. However, most of the current calculation models ignore the uneven support of fractures, and most of them use a single supported fracture model to describe the flow characteristics, which magnifies the role of supported fracture to a certain extent. Therefore, in this study, firstly, the fractures are divided into supported fractures and unsupported fractures. According to the near-well supported fractures and far-well unsupported fractures, the SRV zone is divided into outer SRV and inner SRV. The four areas are characterized by different seepage models, and the analytical solutions of the models are obtained by Laplace transform and inverse transform. Secondly, the material balance pseudotime is introduced to process the production data under the conditions of variable production and variable pressure. The double logarithmic curves of normalized production rate, rate integration, the derivative of the integration, and material balance pseudotime are established, and the parameters are interpreted by fitting the theoretical curve to the measured data. Then, the accuracy of the method is verified by comparison the parameter interpretation results with well test results, and the influence of parameters such as the half-length and permeability of supported and unsupported fractures on gas production is analyzed. Finally, the proposed method is applied to four field cases in southwest China. This paper mainly establishes an analytical method for parameter interpretation after hydraulic fracturing based on the production data analysis method considering the uneven support of fractures, which is of great significance for understanding the mechanism of fracturing stimulation, optimization of fracturing parameters, and gas production forecast.

2021 ◽  
Author(s):  
Hamidreza Hamdi ◽  
Hamid Behmanesh ◽  
Christopher R. Clarkson

Abstract Hydraulic fracture/reservoir properties and fluid-in-place can be quantified by using rate-transient analysis (RTA) techniques applied to flow rates/pressures gathered from multi-fractured horizontal wells (MFHWs) completed in unconventional reservoirs. These methods are commonly developed for the analysis of production data from single wells without considering communication with nearby wells. However, in practice, wells drilled from the same pad can be in strong hydraulic communication with each other. This study aims to develop the theoretical basis for analyzing production data from communicating MFHWs completed in single-phase shale gas reservoirs. A simple and practical semi-analytical method is developed to quantify the communication between wells drilled from the same pad by analyzing online production data from the individual wells. This method is based on the communicating tanks model and employs the concepts of macroscopic material balance and the succession of pseudo-steady states. A set of nonlinear ordinary differential equations (ODEs) are generated and solved simultaneously using the efficient Adams-Bashforth-Moulton algorithm. The accuracy of the solutions is verified against robust numerical simulation. In the first example provided, a MFHW well-pair is presented where the wells are communicating through primary hydraulic fractures with different communication strengths. In the subsequent examples, the method is extended to consider production data from a three-well and a six-well pad with wine-rack-style completions. The developed model is flexible enough to account for asynchronous wells that are producing from distinct reservoir blocks with different fracture/rock properties. For all the studied cases, the semi-analytical method closely reproduces the results of fully numerical simulation. The results demonstrate that, in some cases, when new wells start to produce, the production rates of existing wells can drop significantly. The amount of productivity loss is a direct function of the communication strengths between the wells. The new method can accurately quantify the communication strength between wells through transmissibility multipliers between the hydraulic fractures that are adjusted to match individual well production data. In this study, a new simple and efficient semi-analytical method is presented that can be used to analyze online production data from multiple wells drilled from a pad simultaneously with minimal computation time. The main advantage of the developed method is its scalability, where additional wells can be added to the system very easily.


2016 ◽  
Author(s):  
Pang Wei ◽  
Duan YouZhi ◽  
Yue Hui ◽  
Du Juan ◽  
Zhang Tongyi

2014 ◽  
Vol 17 (04) ◽  
pp. 520-529 ◽  
Author(s):  
Miao Zhang ◽  
Luis F. Ayala H.

Summary This study demonstrates that production-data analysis of variable-bottomhole-flowing-pressure/variable-rate gas wells under boundary-dominated flow (BDF) is possible by use of a density-based approach. In this approach, governing equations are expressed in terms of density variables and dimensionless viscosity/compressibility ratios. Previously, the methodology was successfully used to derive rescaled exponential models for gas-rate-decline analysis of wells primarily producing at constant bottomhole pressure (Ayala and Ye 2013a, b; Ayala and Zhang 2013; Ye and Ayala 2013; Zhang and Ayala 2014). For the case of natural-gas systems experiencing BDF, gas-well-performance analysis has been made largely possible by invoking the concepts of pseudotime, normalized pseudotime, or material-balance pseudotime. The density-based methodology rigorously derived in this study, however, does not use any type of pseudotime calculations, even for variable-rate/variable-pressure-drawdown cases. The methodology enables straightforward original-gas-in-place calculations and gas-well-performance forecasting by means of type curves or straight-line analysis. A number of field and numerical case studies are presented to showcase the capabilities of the proposed approach.


Fuel ◽  
2016 ◽  
Vol 186 ◽  
pp. 821-829 ◽  
Author(s):  
Yonghui Wu ◽  
Linsong Cheng ◽  
Shijun Huang ◽  
Pin Jia ◽  
Jin Zhang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Qingyu Li ◽  
Peichao Li ◽  
Wei Pang ◽  
Quanfu Bi ◽  
Zonghe Du ◽  
...  

Shale gas has now become an important part of unconventional hydrocarbon resources all around the world. The typical properties of shale gas are that both adsorbed gas and free gas play important roles in gas production. Thus the contributions of free and adsorbed gas to the shale gas production have become a hot, significant, and challenging problem in petroleum engineering. This paper presents a new analytical method to calculate the amounts of free and adsorbed gas in the process of shale gas extraction. First, the expressions of the amounts of adsorbed gas, matrix free gas, and fracture free gas in shale versus the producing time are presented on the basis of Langmuir adsorption model and formation pressure distribution. Next, the mathematical model of multifractured horizontal wells in shale gas reservoirs is established and solved by use of Laplace transform and inversion to obtain the normalized formation pressure distribution. Finally, field case studies of two multifractured horizontal shale gas wells in China are carried out with the presented quantitative method. The amounts of adsorbed and free gas in production are calculated, and the adsorbed-to-total ratio is provided. The results show that the proposed method is reliable and efficient.


Sign in / Sign up

Export Citation Format

Share Document