scholarly journals Production Data Analysis of Shale Gas Reservoirs

Author(s):  
Adam Michael Lewis ◽  
Richard Gary Hughes
Fuel ◽  
2016 ◽  
Vol 186 ◽  
pp. 821-829 ◽  
Author(s):  
Yonghui Wu ◽  
Linsong Cheng ◽  
Shijun Huang ◽  
Pin Jia ◽  
Jin Zhang ◽  
...  

2018 ◽  
Vol 56 ◽  
pp. 368-383 ◽  
Author(s):  
Qingyu Li ◽  
Peichao Li ◽  
Wei Pang ◽  
Daolun Li ◽  
Haibo Liang ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shijun Huang ◽  
Jiaojiao Zhang ◽  
Sidong Fang ◽  
Xifeng Wang

In shale gas reservoirs, the production data analysis method is widely used to invert reservoir and fracture parameter, and productivity prediction. Compared with numerical models and semianalytical models, which have high computational cost, the analytical model is mostly used in the production data analysis method to characterize the complex fracture network formed after fracturing. However, most of the current calculation models ignore the uneven support of fractures, and most of them use a single supported fracture model to describe the flow characteristics, which magnifies the role of supported fracture to a certain extent. Therefore, in this study, firstly, the fractures are divided into supported fractures and unsupported fractures. According to the near-well supported fractures and far-well unsupported fractures, the SRV zone is divided into outer SRV and inner SRV. The four areas are characterized by different seepage models, and the analytical solutions of the models are obtained by Laplace transform and inverse transform. Secondly, the material balance pseudotime is introduced to process the production data under the conditions of variable production and variable pressure. The double logarithmic curves of normalized production rate, rate integration, the derivative of the integration, and material balance pseudotime are established, and the parameters are interpreted by fitting the theoretical curve to the measured data. Then, the accuracy of the method is verified by comparison the parameter interpretation results with well test results, and the influence of parameters such as the half-length and permeability of supported and unsupported fractures on gas production is analyzed. Finally, the proposed method is applied to four field cases in southwest China. This paper mainly establishes an analytical method for parameter interpretation after hydraulic fracturing based on the production data analysis method considering the uneven support of fractures, which is of great significance for understanding the mechanism of fracturing stimulation, optimization of fracturing parameters, and gas production forecast.


2021 ◽  
Author(s):  
Hamidreza Hamdi ◽  
Hamid Behmanesh ◽  
Christopher R. Clarkson

Abstract Hydraulic fracture/reservoir properties and fluid-in-place can be quantified by using rate-transient analysis (RTA) techniques applied to flow rates/pressures gathered from multi-fractured horizontal wells (MFHWs) completed in unconventional reservoirs. These methods are commonly developed for the analysis of production data from single wells without considering communication with nearby wells. However, in practice, wells drilled from the same pad can be in strong hydraulic communication with each other. This study aims to develop the theoretical basis for analyzing production data from communicating MFHWs completed in single-phase shale gas reservoirs. A simple and practical semi-analytical method is developed to quantify the communication between wells drilled from the same pad by analyzing online production data from the individual wells. This method is based on the communicating tanks model and employs the concepts of macroscopic material balance and the succession of pseudo-steady states. A set of nonlinear ordinary differential equations (ODEs) are generated and solved simultaneously using the efficient Adams-Bashforth-Moulton algorithm. The accuracy of the solutions is verified against robust numerical simulation. In the first example provided, a MFHW well-pair is presented where the wells are communicating through primary hydraulic fractures with different communication strengths. In the subsequent examples, the method is extended to consider production data from a three-well and a six-well pad with wine-rack-style completions. The developed model is flexible enough to account for asynchronous wells that are producing from distinct reservoir blocks with different fracture/rock properties. For all the studied cases, the semi-analytical method closely reproduces the results of fully numerical simulation. The results demonstrate that, in some cases, when new wells start to produce, the production rates of existing wells can drop significantly. The amount of productivity loss is a direct function of the communication strengths between the wells. The new method can accurately quantify the communication strength between wells through transmissibility multipliers between the hydraulic fractures that are adjusted to match individual well production data. In this study, a new simple and efficient semi-analytical method is presented that can be used to analyze online production data from multiple wells drilled from a pad simultaneously with minimal computation time. The main advantage of the developed method is its scalability, where additional wells can be added to the system very easily.


SPE Journal ◽  
2014 ◽  
Vol 20 (02) ◽  
pp. 347-359 ◽  
Author(s):  
Jiang Xie ◽  
Changdong Yang ◽  
Neha Gupta ◽  
Michael J. King ◽  
Akhil Datta-Gupta

Summary We present a novel approach to calculate drainage volume and well performance in shale gas reservoirs by use of the fast marching method (FMM) combined with a geometric pressure approximation. Our approach can fully account for complex fracture-network geometries associated with multistage hydraulic fractures and their impact on the well pressure and rates. The major advantages of our proposed approach are its simplicity, intuitive appeal, and computational efficiency. For example, we can compute and visualize the time evolution of the well-drainage volume for multimillion-cell geologic models in seconds without resorting to reservoir simulation. A geometric approximation of the drainage volume is then used to compute the well rates and the reservoir pressure. The speed and versatility of our proposed approach make it ideally suited for parameter estimation by means of the inverse modeling of shale-gas performance data. We use experimental design to perform the sensitivity analysis to identify the “heavy hitters” and a genetic algorithm (GA) to calibrate the relevant fracture and matrix parameters in shale-gas reservoirs by history matching of production data. In addition to the production data, microseismic information is used to help us constrain the fracture extent and orientation and to estimate the stimulated reservoir volume (SRV). The proposed approach is applied to a fractured shale-gas well. The results clearly show reduced ranges in the estimated fracture parameters and SRV, leading to improved forecasting and reserves estimation.


Sign in / Sign up

Export Citation Format

Share Document