scholarly journals Linear Diophantine Uncertain Linguistic Power Einstein Aggregation Operators and Their Applications to Multiattribute Decision Making

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Tahir Mahmood ◽  
Izatmand ◽  
Zeeshan Ali ◽  
Kifayat Ullah ◽  
Qaisar Khan ◽  
...  

Linear Diophantine uncertain linguistic set (LDULS) is a modified variety of the fuzzy set (FS) to manage problematic and inconsistent information in actual life troubles. LDULS covers the grade of truth, grade of falsity, and their reference parameters with the uncertain linguistic term (ULT) with a rule 0 ≤ α AMG u AMG x + β ANG v AMG x ≤ 1 , where 0 ≤ α AMG + β ANG ≤ 1 . In this study, the principle of LDULS and their useful laws are elaborated. Additionally, the power Einstein (PE) aggregation operator (AO) is a conventional sort of AO utilized in innovative decision-making troubles, which is effective to aggregate the family of numerical elements. To determine the interrelationship between any numbers of arguments, we elaborate the linear Diophantine uncertain linguistic PE averaging (LDULPEA), linear Diophantine uncertain linguistic PE weighted averaging (LDULPEWA), linear Diophantine uncertain linguistic PE geometric (LDULPEG), and linear Diophantine uncertain linguistic PE weighted geometric (LDULPEWG) operators; then, we discuss their useful results. Conclusively, a decision-making methodology is utilized for the multiattribute decision-making (MADM) dilemma with elaborated information. A sensible illustration is specified to demonstrate the accessibility and rewards of the intended technique by comparison with certain prevailing techniques. The intended AOs are additional comprehensive than the prevailing ones to exploit the ambiguous and inaccurate knowledge. Numerous remaining operators are chosen as individual incidents of the suggested one. Ultimately, the supremacy and advantages of the elaborated operators are also discussed with the help of the geometrical form to show the validity and consistency of explored operators.


Author(s):  
Abbas Mardani ◽  
Mehrbakhsh Nilashi ◽  
Edmundas Kazimieras Zavadskas ◽  
Siti Rahmah Awang ◽  
Habib Zare ◽  
...  

In many real-life decision making (DM) situations, the available information is vague or imprecise. To adequately solve decision problems with vague or imprecise information, fuzzy set theory and aggregation operator theory have become powerful tools. In last three decades, DM theories and methods under fuzzy aggregation operator have been proposed and developed for effectively solving the DM problems and numerous applications have been reported in the literature. While various aggregation operators have been suggested and developed, there is a lack of research regarding systematic literature review and classification of study in this field. Regarding this, Web of Science database has been nominated and systematic and meta-analysis method called “PRISMA” has been proposed. Accordingly, a review of 312 published articles appearing in 33 popular journals related to fuzzy set theory, aggregation operator theory and DM approaches between July 1986 and June 2017 have been attained to reach a comprehensive review of DM methods and aggregation operator environment. Consequently, the selected published articles have been categorized by name of author(s), the publication year, technique, application area, country, research contribution and journals in which they appeared. The findings of this study found that, ordered weighted averaging (OWA) has been the highest frequently accessed more than other areas. This systematic review shows that the DM theories under fuzzy aggregation operator environment have received a great deal of interest from researchers and practitioners in many disciplines.



2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Lei Xu ◽  
Yi Liu ◽  
Haobin Liu

As a generalization of intuitionistic fuzzy set (IFS) and Pythagorean fuzzy set (PFS), q-rung orthopair fuzzy set (q-ROFS) is a new concept in describing complex fuzzy uncertainty information. The present work focuses on the multiattribute group decision-making (MAGDM) approach under the q-rung orthopair fuzzy information. To begin with, some drawbacks of the existing MAGDM methods based on aggregation operators (AOs) are firstly analyzed. In addition, some improved operational laws put forward to overcome the drawbacks along with some properties of the operational law are proved. Thirdly, we put forward the improved q-rung orthopair fuzzy-weighted averaging (q-IROFWA) aggregation operator and improved q-rung orthopair fuzzy-weighted power averaging (q-IROFWPA) aggregation operator and present some of their properties. Then, based on the q-IROFWA operator and q-IROFWPA operator, we proposed a new method to deal with MAGDM problems under the fuzzy environment. Finally, some numerical examples are provided to illustrate the feasibility and validity of the proposed method.



Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 145
Author(s):  
Yun Jin ◽  
Zareena Kousar ◽  
Kifayat Ullah ◽  
Tahir Mahmood ◽  
Nimet Yapici Pehlivan ◽  
...  

Interval-valued T-spherical fuzzy set (IVTSFS) handles uncertain and vague information by discussing their membership degree (MD), abstinence degree (AD), non-membership degree (NMD), and refusal degree (RD). MD, AD, NMD, and RD are defined in terms of closed subintervals of that reduce information loss compared to the T-spherical fuzzy set (TSFS), which takes crisp values from intervals; hence, some information may be lost. The purpose of this manuscript is to develop some Hamacher aggregation operators (HAOs) in the environment of IVTSFSs. To do so, some Hamacher operational laws based on Hamacher t-norms (HTNs) and Hamacher t-conorms (HTCNs) are introduced. Using Hamacher operational laws, we develop some aggregation operators (AOs), including an interval-valued T-spherical fuzzy Hamacher (IVTSFH) weighted averaging (IVTSFHWA) operator, an IVTSFH-ordered weighted averaging (IVTSFHOWA) operator, an IVTSFH hybrid averaging (IVTSFHHA) operator, an IVTSFH-weighted geometric (IVTSFHWG) operator, an IVTSFH-ordered weighted geometric (IVTSFHOWG) operator, and an IVTSFH hybrid geometric (IVTSFHHG) operator. The validation of the newly developed HAOs is investigated, and their basic properties are examined. In view of some restrictions, the generalization and proposed HAOs are shown, and a multi-attribute decision-making (MADM) procedure is explored based on the HAOs, which are further exemplified. Finally, a comparative analysis of the proposed work is also discussed with previous literature to show the superiority of our work.



Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 280 ◽  
Author(s):  
Harish Garg ◽  
Gagandeep Kaur

Probabilistic dual hesitant fuzzy set (PDHFS) is an enhanced version of a dual hesitant fuzzy set (DHFS) in which each membership and non-membership hesitant value is considered along with its occurrence probability. These assigned probabilities give more details about the level of agreeness or disagreeness. By emphasizing the advantages of the PDHFS and the aggregation operators, in this manuscript, we have proposed several weighted and ordered weighted averaging and geometric aggregation operators by using Einstein norm operations, where the preferences related to each object is taken in terms of probabilistic dual hesitant fuzzy elements. Several desirable properties and relations are also investigated in details. Also, we have proposed two distance measures and its based maximum deviation method to compute the weight vector of the different criteria. Finally, a multi-criteria group decision-making approach is constructed based on proposed operators and the presented algorithm is explained with the help of the numerical example. The reliability of the presented decision-making method is explored with the help of testing criteria and by comparing the results of the example with several prevailing studies.



2018 ◽  
Vol 29 (1) ◽  
pp. 393-408 ◽  
Author(s):  
Khaista Rahman ◽  
Saleem Abdullah ◽  
Muhammad Sajjad Ali Khan

Abstract In this paper, we introduce the notion of Einstein aggregation operators, such as the interval-valued Pythagorean fuzzy Einstein weighted averaging aggregation operator and the interval-valued Pythagorean fuzzy Einstein ordered weighted averaging aggregation operator. We also discuss some desirable properties, such as idempotency, boundedness, commutativity, and monotonicity. The main advantage of using the proposed operators is that these operators give a more complete view of the problem to the decision makers. These operators provide more accurate and precise results as compared the existing method. Finally, we apply these operators to deal with multiple-attribute group decision making under interval-valued Pythagorean fuzzy information. For this, we construct an algorithm for multiple-attribute group decision making. Lastly, we also construct a numerical example for multiple-attribute group decision making.



Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1236
Author(s):  
Muhammad Riaz ◽  
Ayesha Razzaq ◽  
Humaira Kalsoom ◽  
Dragan Pamučar ◽  
Hafiz Muhammad Athar Farid ◽  
...  

The notions of fuzzy set (FS) and intuitionistic fuzzy set (IFS) make a major contribution to dealing with practical situations in an indeterminate and imprecise framework, but there are some limitations. Pythagorean fuzzy set (PFS) is an extended form of the IFS, in which degree of truthness and degree of falsity meet the condition 0≤Θ˘2(x)+K2(x)≤1. Another extension of PFS is a q´-rung orthopair fuzzy set (q´-ROFS), in which truthness degree and falsity degree meet the condition 0≤Θ˘q´(x)+Kq´(x)≤1,(q´≥1), so they can characterize the scope of imprecise information in more comprehensive way. q´-ROFS theory is superior to FS, IFS, and PFS theory with distinguished characteristics. This study develops a few aggregation operators (AOs) for the fusion of q´-ROF information and introduces a new approach to decision-making based on the proposed operators. In the framework of this investigation, the idea of a generalized parameter is integrated into the q´-ROFS theory and different generalized q´-ROF geometric aggregation operators are presented. Subsequently, the AOs are extended to a “group-based generalized parameter”, with the perception of different specialists/decision makers. We developed q´-ROF geometric aggregation operator under generalized parameter and q´-ROF geometric aggregation operator under group-based generalized parameter. Increased water requirements, in parallel with water scarcity, force water utilities in developing countries to follow complex operating techniques for the distribution of the available amounts of water. Reducing water losses from water supply systems can help to bridge the gap between supply and demand. Finally, a decision-making approach based on the proposed operator is being built to solve the problems under the q´-ROF environment. An illustrative example related to water loss management has been given to show the validity of the developed method. Comparison analysis between the proposed and the existing operators have been performed in term of counter-intuitive cases for showing the liability and dominance of proposed techniques to the existing one is also considered.



Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 608 ◽  
Author(s):  
Saifullah Khan ◽  
Saleem Abdullah ◽  
Lazim Abdullah ◽  
Shahzaib Ashraf

The objective of this study was to create a logarithmic decision-making approach to deal with uncertainty in the form of a picture fuzzy set. Firstly, we define the logarithmic picture fuzzy number and define the basic operations. As a generalization of the sets, the picture fuzzy set provides a more profitable method to express the uncertainties in the data to deal with decision making problems. Picture fuzzy aggregation operators have a vital role in fuzzy decision-making problems. In this study, we propose a series of logarithmic aggregation operators: logarithmic picture fuzzy weighted averaging/geometric and logarithmic picture fuzzy ordered weighted averaging/geometric aggregation operators and characterized their desirable properties. Finally, a novel algorithm technique was developed to solve multi-attribute decision making (MADM) problems with picture fuzzy information. To show the superiority and the validity of the proposed aggregation operations, we compared it with the existing method, and concluded from the comparison and sensitivity analysis that our proposed technique is more effective and reliable.



Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 70 ◽  
Author(s):  
Gulfam Shahzadi ◽  
Muhammad Akram ◽  
Ahmad N. Al-Kenani

In fuzzy set theory, t-norms and t-conorms are fundamental binary operators. Yager proposed respective parametric families of both t-norms and t-conorms. In this paper, we apply these operators for the analysis of Pythagorean fuzzy sets. For this purpose, we introduce six families of aggregation operators named Pythagorean fuzzy Yager weighted averaging aggregation, Pythagorean fuzzy Yager ordered weighted averaging aggregation, Pythagorean fuzzy Yager hybrid weighted averaging aggregation, Pythagorean fuzzy Yager weighted geometric aggregation, Pythagorean fuzzy Yager ordered weighted geometric aggregation and Pythagorean fuzzy Yager hybrid weighted geometric aggregation. These tools inherit the operational advantages of the Yager parametric families. They enable us to study two multi-attribute decision-making problems. Ultimately we can choose the best option by comparison of the aggregate outputs through score values. We show this procedure with two practical fully developed examples.



Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Xiaowen Qi ◽  
Junling Zhang ◽  
Changyong Liang

Aiming at multiple attributes group decision-making (MAGDM) problems that characterize uncertainty nature and decision hesitancy, firstly, we propose the interval-valued dual hesitant fuzzy unbalanced linguistic set (IVDHFUBLS) in which two sets of interval-valued hesitant fuzzy membership degrees and nonmembership degrees are employed to supplement the most preferred unbalanced linguistic term, as an effective hybrid expression tool to elicit complicate preferences of decision-makers more comprehensively and flexibly than existing tools based on classic linguistic term set. Basic operations for IVDHFUBLS are further defined; also a novel distance measure is developed to avoid potential information distortion that could be brought about by traditional complementing methodology for hesitant fuzzy set and its derivatives. In view of the fundamental role of aggregation operators in MAGDM modelling, we next develop some extended power aggregation operators for IVDHFUBLS, including power aggregation operator, weighted power aggregation operator, and induced power ordered weighted aggregation operator; their desirable properties and special cases are also analyzed theoretically. Subsequently, with support of the above methods, we develop two effective approaches for our targeted complex decision-making problems and verify their effectiveness and practicality by numerical studies.



2020 ◽  
pp. 1-20
Author(s):  
Muhammad Akram ◽  
Gulfam Shahzadi ◽  
Sundas Shahzadi

An q-rung orthopair fuzzy set is a generalized structure that covers the modern extensions of fuzzy set, including intuitionistic fuzzy set and Pythagorean fuzzy set, with an adjustable parameter q that makes it flexible and adaptable to describe the inexact information in decision making. The condition of q-rung orthopair fuzzy set, i.e., sum of q th power of membership degree and nonmembership degree is bounded by one, makes it highly competent and adequate to get over the limitations of existing models. The basic purpose of this study is to establish some aggregation operators under the q-rung orthopair fuzzy environment with Einstein norm operations. Motivated by innovative features of Einstein operators and dominant behavior of q-rung orthopair fuzzy set, some new aggregation operators, namely, q-rung orthopair fuzzy Einstein weighted averaging, q-rung orthopair fuzzy Einstein ordered weighted averaging, generalized q-rung orthopair fuzzy Einstein weighted averaging and generalized q-rung orthopair fuzzy Einstein ordered weighted averaging operators are defined. Furthermore, some properties related to proposed operators are presented. Moreover, multi-attribute decision making problems related to career selection, agriculture land selection and residential place selection are presented under these operators to show the capability and proficiency of this new idea. The comparison analysis with existing theories shows the superiorities of proposed model.



Sign in / Sign up

Export Citation Format

Share Document