scholarly journals In Vitro Anticancer Activity of Imperata cylindrica Root’s Extract toward Human Cervical Cancer and Identification of Potential Bioactive Compounds

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Paul Nayim ◽  
Krishna Sudhir ◽  
Armelle T. Mbaveng ◽  
Victor Kuete ◽  
Mukherjee Sanjukta

Imperata cylindrica is traditionally used to cure several diseases including cancer, wounds, and hypertension. The present study was designed to investigate the anticancer activity of the methanolic root extract of I. cylindrica (IC-MeOH). The water-soluble tetrazolium-1 and colony formation assays were used to check the proliferation ability of the cells. Cell apoptosis and cell cycle were measured by flow cytometry-based fluorescence-activated cell sorting. The ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) analysis was used for the metabolites profiling of IC-MeOH. Based on high-mass accuracy, spectral data, and previous reports, tentative compound identifications were assigned. Our findings revealed that IC-MeOH inhibited the proliferation of HeLa and CaSki cells. The plant extract was also found to induce a concentration- and time-dependent apoptosis and cell cycle arrest in the G0/G1 phase (IC50 value) in CaSki cell line. Analysis of IC-MeOH permitted the identification of 10 compounds already reported for their anticancer activity, epicatechin, curcumin, (-)-yatein, caffeic acid, myricetin, jatrorrhizine, harmaline, cinnamaldehyde, dobutamine, and syringin. In conclusion, IC-MeOH is a rich source of cytotoxic metabolites that inhibits human cervical cancer proliferation via apoptosis and cell cycle arrest.

2016 ◽  
Vol 11 (4) ◽  
pp. 838 ◽  
Author(s):  
Ning Xia

<p class="Abstract">The present study was aimed at to demonstrate the antitumor effects of syringin in HeLa human cervical cancer cells. Its effects on apoptosis, cell cycle phase distribution as well as on cell migration were also examined. The effect on cell proliferation was evaluated by MTT assay, while as effects on colony formation were assessed using clonogenic assay. Syringin inhibited cancer cell growth in HeLa cells in a time-dependent as well as in a concentration-dependent manner. Syringin also led to inhibition of colony formation efficacy with complete suppression at 100 µM drug dose. Syringin could induce G2/M cell cycle arrest along with slight sub-G1 cell cycle arrest. HeLa cells began to emit red fluorescence as the dose of syringin increased from 0 µM in vehicle control to 100 µM. Syringin also inhibited cell migration in a dose-dependent manner with 100 µM dose of syringin leading to 100% inhibition of cell migration.</p><p> </p>


2021 ◽  
Vol 59 (1) ◽  
pp. 54-65
Author(s):  
Justyna Stefanowicz-Hajduk ◽  
Magdalena Gucwa ◽  
Barbara Moniuszko-Szajwaj ◽  
Anna Stochmal ◽  
Anna Kawiak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document