scholarly journals Syringin exhibits anticancer effects in HeLa human cervical cancer cells by inducing apoptosis, cell cycle arrest and inhibition of cell migration

2016 ◽  
Vol 11 (4) ◽  
pp. 838 ◽  
Author(s):  
Ning Xia

<p class="Abstract">The present study was aimed at to demonstrate the antitumor effects of syringin in HeLa human cervical cancer cells. Its effects on apoptosis, cell cycle phase distribution as well as on cell migration were also examined. The effect on cell proliferation was evaluated by MTT assay, while as effects on colony formation were assessed using clonogenic assay. Syringin inhibited cancer cell growth in HeLa cells in a time-dependent as well as in a concentration-dependent manner. Syringin also led to inhibition of colony formation efficacy with complete suppression at 100 µM drug dose. Syringin could induce G2/M cell cycle arrest along with slight sub-G1 cell cycle arrest. HeLa cells began to emit red fluorescence as the dose of syringin increased from 0 µM in vehicle control to 100 µM. Syringin also inhibited cell migration in a dose-dependent manner with 100 µM dose of syringin leading to 100% inhibition of cell migration.</p><p> </p>

2020 ◽  
Vol 19 (7) ◽  
pp. 1423-1428
Author(s):  
Juan Li ◽  
Yuanyuan Chen

Purpose: To determine the anticancer effect of a pentacyclic triterpenoid, isomultiflorenol, against human cervical cancer.Methods: The proliferation of cancer cells was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) assay. Cell viability was measured with colony forming assay, while flow cytometry was used to study phase distribution in cancer cell mitosis. Electron microscopy was employed for the determination of autophagy induction in the cancer cells, while western blotting was used to assay protein expressions.Results: Isomultiflorenol significantly (p < 0.05) inhibited the proliferation and viability of cervical cancer cells in a concentration-dependent manner. The IC50 of isomultiflorenol was 10 μM for HeLa cells, and 90 μM for normal EV304 cells. The anti-proliferative effects were exerted as a result of arrest of HeLa cells at G2/M phase. The G2/M phase cells increased from 10.34 % in control to 30.21 % on treatment with 20 μM isomultiflorenol. Furthermore, administration of isomultiflorenol led to induction of cancer cell autophagy via mitochondrial apoptotic signaling.Conclusion: Isomultiflorenol inhibits human cervical cancer cells in vitro by inducing cell cycle arrest and autophagy. Thus, it is a potential lead molecule in the development of cervical cancer chemotherapy. Keywords: Cervical cancer, Terpenoids, Isomultiflorenol, Autophagy, Cell cycle arrest, Apoptosis


2018 ◽  
Vol 96 (10) ◽  
pp. 1004-1011 ◽  
Author(s):  
Zita Bognar ◽  
Katalin Fekete ◽  
Rita Bognar ◽  
Aliz Szabo ◽  
Reka A. Vass ◽  
...  

Previously, we found that desethylamiodarone (DEA) may have therapeutic potentiality in bladder cancer. In this study, we determined its effects on human cervical cancer cells (HeLa). Cell viability was evaluated by Muse Cell Count & Viability Assay; cell apoptosis was detected by Muse Annexin V & Dead Cell Assay. Cell cycle was flow cytometrically determined by Muse Cell Cycle Kit and the morphological changes of the cells were observed under a fluorescence microscope after Hoechst 33342 staining. The changes in the expression levels of apoptosis-related proteins in the HeLa cells were assessed by immunoblot. Our results showed that DEA significantly inhibited the proliferation and viability of HeLa cells and induced apoptosis in vitro in dose-dependent and also in cell cycle-dependent manner because DEA induced G0/G1 phase arrest in the HeLa cell line. We found that DEA treatment downregulated the expression of phospho-Akt and phospho-Bad. In addition, DEA could downregulate expression of Bcl-2, upregulate Bax, and induce cytochrome c release. Our results indicate that DEA might have significance as an anti-tumor agent against human cervical cancer.


2020 ◽  
Vol 21 (20) ◽  
pp. 7445 ◽  
Author(s):  
Sai-Fung Chung ◽  
Chi-Fai Kim ◽  
Ho-Yin Chow ◽  
Hiu-Chi Chong ◽  
Suet-Ying Tam ◽  
...  

With our recent success in developing a recombinant human arginase drug against broad-spectrum cancer cell lines, we have explored the potential of a recombinant Bacillus caldovelox arginase mutant (BCA-M) for human cervical cancer treatment. Our studies demonstrated that BCA-M significantly inhibited the growth of human cervical cancer cells in vitro regardless of argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) expression. Drug susceptibilities correlate well with the expressions of major urea cycle genes and completeness of L-arginine regeneration pathways. With the expressions of ASS and ASL genes conferring resistance to L-arginine deiminase (ADI) which is undergoing Phase III clinical trial, BCA-M offers the advantage of a broader spectrum of susceptible cancer cells. Mechanistic studies showed that BCA-M inhibited the growth of human cervical cancer cells by inducing apoptosis and cell cycle arrest at S and/or G2/M phases. Our results also displayed that autophagy served as a protective mechanism, while the growth inhibitory effects of BCA-M could be enhanced synergistically by its combination to the autophagy inhibitor, chloroquine (CQ), on human cervical cancer cells.


Sign in / Sign up

Export Citation Format

Share Document