scholarly journals A Multiroute Signal Control Model considering Coordination Rate of Green Bandwidth

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jiao Yao ◽  
Qingyun Tang ◽  
Pincheng Wang

Oriented to characteristics of the inflow and outflow of routes in urban road network, we modified the classical fundamental green wave bandwidth model, in which separate turning green wave band is available for traffic flow from subarterials merging into an arterial, and this variable green wave band can be more flexible to service the commuting traffic. Moreover, with the analysis of the mapping characteristics of the phase coordination rate, the concept of the coordination rate of green wave bandwidth was proposed, with which as the objective function, a multiroute signal coordination control model was established, and this model is a mixed integer linear programming problem with the overall optimal coordination rate of inbound, outbound, and turning movement as the objective. Finally, a case study was given with road network in Suzhou Industrial Park, Jiangsu Province, China. From the simulation results, we can conclude that the coordinated distribution of the model proposed in this study is more stable; the fluctuation range is 0.09, which is less than that of optimization scheme in classical signal timing software Synchro, which is 0.33; and the total route delay can also be reduced by 15% compared to the current situation and 3.3% compared to Synchro optimization solution.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yangfan Zhou ◽  
Shunping Jia ◽  
Baohua Mao ◽  
Tin Kin Ho ◽  
Wei Wei

Modern trams are developing fast because of their characteristics like medium capability and energy saving. Exclusive way is always set in practice to avoid interruption from general vehicles, while trams have to stop at intersections frequently due to signal rules in the road network. Therefore, signal optimization has great effects on operational efficiency of trams system. In this paper, an arterial signal coordination optimization model is proposed for trams progression based on the Asymmetrical Multi-BAND (AM-BAND) method. The AM-BAND is modified from the following aspects. Firstly, BAM-BAND is developed by supplementing active bandwidth constraints to AM-BAND. Assisted by the IBM ILOG CPLEX Optimization Studio, two arterial signals plans with eight intersections are achieved from AM-BAND and BAM-BAND for comparison. Secondly, based on the modified BAM-BAND, a BAM-TRAMBAND model is presented, which incorporates three constraints regarding tram operations, including dwell time at stations, active signal priority, and minimum bandwidth value. The case study and VISSIM simulation results show that travel times of trams decrease with signal plan from BAM-TRAMBAND comparing with the original signal plan. Moreover, traffic performance indicators such as stops and delay are improved significantly.


2015 ◽  
Vol 10 (Special-Issue1) ◽  
pp. 15-20
Author(s):  
Omid Rezvan ◽  
Seyed Tabatabaei ◽  
Marziyeh Yoosefi

Actuated signal control is very efficient for isolated intersections, but along arterials it lacks the means to synchronize signals, leading to high delays and frequent stops which produce high emissions and fuel consumption. This research aims to use new paradigms based on actuated control that can lead signals to synchronize with their neighboring intersections resulting in reduction of emissions, fuel consumption and travel time in the arterials. In this research, traffic signal coordination software Synchro 8 was used to coordinate the signals on closely spaced intersections in Enghelab avenue in Ahvaz. In order to evaluate the effectiveness of proposed control logic, a simulation test bed was developed in the traffic simulation model SimTraffic 8 and 3D viewer 8.The Proposed logic resulted in total travel time, emissions and fuel consumption reductions of up to 25.6 %, 12.61% and 16.4% respectively compared to current condition logic in Enghelab avenue.


2018 ◽  
Vol 10 (8) ◽  
pp. 2849 ◽  
Author(s):  
Chen Zhao ◽  
Yulin Chang ◽  
Peng Zhang

In order to alleviate the problem of the oversaturation of intersections, a traffic control method using a main-signal and pre-signals to periodically control the direction of dynamic waiting lanes was proposed in this paper. Based on the research on vehicle delay at intersections with dynamic waiting lanes and constraint relationships among a set of timing elements of the main-signal and pre-signal, a coordinated control model of a main-signal and pre-signal was built to minimize the average delay. Finally, a case study was performed to show that the proposed model is feasible. The objective optimization was performed by using a genetic algorithm to determine the main-signal and pre-signal timing scheme of the case study intersection, and then the average delay before and after installing dynamic waiting lanes was calculated and analyzed. The proposed method was found to be effective in reducing the intersection delay by 31.8% compared with the present situation of the intersection. Subsequently, the traffic volumes in the directions with dynamic waiting lanes installed were changed. It was demonstrated that with increasing traffic volumes, the effectiveness of the model to reduce intersection delay would be significant.


2016 ◽  
Vol 167 (5) ◽  
pp. 294-301
Author(s):  
Leo Bont

Optimal layout of a forest road network The road network is the backbone of forest management. When creating or redesigning a forest road network, one important question is how to shape the layout, this means to fix the spatial arrangement and the dimensioning standard of the roads. We consider two kinds of layout problems. First, new forest road network in an area without any such development yet, and second, redesign of existing road network for actual requirements. For each problem situation, we will present a method that allows to detect automatically the optimal road and harvesting layout. The method aims to identify a road network that concurrently minimizes the harvesting cost, the road network cost (construction and maintenance) and the hauling cost over the entire life cycle. Ecological issues can be considered as well. The method will be presented and discussed with the help of two case studies. The main benefit of the application of optimization tools consists in an objective-based planning, which allows to check and compare different scenarios and objectives within a short time. The responses coming from the case study regions were highly positive: practitioners suggest to make those methods a standard practice and to further develop the prototype to a user-friendly expert software.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Tinggui Chen ◽  
Shiwen Wu ◽  
Jianjun Yang ◽  
Guodong Cong ◽  
Gongfa Li

It is common that many roads in disaster areas are damaged and obstructed after sudden-onset disasters. The phenomenon often comes with escalated traffic deterioration that raises the time and cost of emergency supply scheduling. Fortunately, repairing road network will shorten the time of in-transit distribution. In this paper, according to the characteristics of emergency supplies distribution, an emergency supply scheduling model based on multiple warehouses and stricken locations is constructed to deal with the failure of part of road networks in the early postdisaster phase. The detailed process is as follows. When part of the road networks fail, we firstly determine whether to repair the damaged road networks, and then a model of reliable emergency supply scheduling based on bi-level programming is proposed. Subsequently, an improved artificial bee colony algorithm is presented to solve the problem mentioned above. Finally, through a case study, the effectiveness and efficiency of the proposed model and algorithm are verified.


Author(s):  
Aly-Joy Ulusoy ◽  
Filippo Pecci ◽  
Ivan Stoianov

AbstractThis manuscript investigates the design-for-control (DfC) problem of minimizing pressure induced leakage and maximizing resilience in existing water distribution networks. The problem consists in simultaneously selecting locations for the installation of new valves and/or pipes, and optimizing valve control settings. This results in a challenging optimization problem belonging to the class of non-convex bi-objective mixed-integer non-linear programs (BOMINLP). In this manuscript, we propose and investigate a method to approximate the non-dominated set of the DfC problem with guarantees of global non-dominance. The BOMINLP is first scalarized using the method of $$\epsilon $$ ϵ -constraints. Feasible solutions with global optimality bounds are then computed for the resulting sequence of single-objective mixed-integer non-linear programs, using a tailored spatial branch-and-bound (sBB) method. In particular, we propose an equivalent reformulation of the non-linear resilience objective function to enable the computation of global optimality bounds. We show that our approach returns a set of potentially non-dominated solutions along with guarantees of their non-dominance in the form of a superset of the true non-dominated set of the BOMINLP. Finally, we evaluate the method on two case study networks and show that the tailored sBB method outperforms state-of-the-art global optimization solvers.


2014 ◽  
Vol 15 (2) ◽  
pp. 121-128
Author(s):  
Jorge Hans Alayo

Abstract Existing transmission planning models consider basic aspects of the problem. In practice, a transmission utility needs to model other important details such as operation cost of the power system. In this article, a least cost transmission expansion model is proposed considering the operation cost in order to model the trade-off between building new transmission capacity and increasing the power system’s operation cost. The proposed model is transformed into a mixed integer linear programming problem using linearization techniques and solved with CPLEX. Finally, results of the model for the Garver test system and IEEE 24-bus test system are shown.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 102
Author(s):  
Maya Briani ◽  
Emiliano Cristiani ◽  
Paolo Ranut

In this paper, we propose two models describing the dynamics of heavy and light vehicles on a road network, taking into account the interactions between the two classes. The models are tailored for two-lane highways where heavy vehicles cannot overtake. This means that heavy vehicles cannot saturate the whole road space, while light vehicles can. In these conditions, the creeping phenomenon can appear, i.e., one class of vehicles can proceed even if the other class has reached the maximal density. The first model we propose couples two first-order macroscopic LWR models, while the second model couples a second-order microscopic follow-the-leader model with a first-order macroscopic LWR model. Numerical results show that both models are able to catch some second-order (inertial) phenomena such as stop and go waves. Models are calibrated by means of real data measured by fixed sensors placed along the A4 Italian highway Trieste–Venice and its branches, provided by Autovie Venete S.p.A.


Sign in / Sign up

Export Citation Format

Share Document