scholarly journals Development of AI-Based Vehicle Detection and Tracking System for C-ITS Application

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Sehyun Tak ◽  
Jong-Deok Lee ◽  
Jeongheon Song ◽  
Sunghoon Kim

There are various means of monitoring traffic situations on roads. Due to the rise of artificial intelligence (AI) based image processing technology, there is a growing interest in developing traffic monitoring systems using camera vision data. This study provides a method for deriving traffic information using a camera installed at an intersection to improve the monitoring system for roads. The method uses a deep-learning-based approach (YOLOv4) for image processing for vehicle detection and vehicle type classification. Lane-by-lane vehicle trajectories are estimated by matching the detected vehicle locations with the high-definition map (HD map). Based on the estimated vehicle trajectories, the traffic volumes of each lane-by-lane traveling direction and queue lengths of each lane are estimated. The performance of the proposed method was tested with thousands of samples according to five different evaluation criteria: vehicle detection rate, vehicle type classification, trajectory prediction, traffic volume estimation, and queue length estimation. The results show a 99% vehicle detection performance with less than 20% errors in classifying vehicle types and estimating the lane-by-lane travel volume, which is reasonable. Hence, the method proposed in this study shows the feasibility of collecting detailed traffic information using a camera installed at an intersection. The approach of combining AI and HD map techniques is the main contribution of this study, which shows a high chance of improving current traffic monitoring systems.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 72528-72537 ◽  
Author(s):  
Hatim Derrouz ◽  
Abderrahim Elbouziady ◽  
Hamd Ait Abdelali ◽  
Rachid Oulad Haj Thami ◽  
Sanaa El Fkihi ◽  
...  






2011 ◽  
Vol 55-57 ◽  
pp. 1593-1598
Author(s):  
Xiao Xuan Qi ◽  
Jian Wei Ji ◽  
Xiao Wei Han ◽  
Zhong Hu Yuan

In this paper, an approach based on wavelet packet analysis is proposed to deal with the problem that acoustic signal of moving vehicle is easily influenced by environmental noise in vehicle type classification. Wavelet packet analysis is applied to extract local and detail feature information of acoustic signal in the time-frequency domain. Firstly, raw acoustic signal is decomposed into different frequency bands by wavelet packet analysis, and then decomposition coefficients are reconstructed. The energy of every frequency band component is used to form the feature vector. Finally, vehicle type classification is implemented by RBF neural network on the basis of these feature vectors. Experimental results show that the proposed method is feasible and effective.





Sign in / Sign up

Export Citation Format

Share Document