scholarly journals Differential Evolution Algorithm-Based Iterative Sliding Mode Control of Underactuated Ship Motion

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huaran Yan ◽  
Yingjie Xiao ◽  
Qinrong Li ◽  
Renqiang Wang

The differential evolution algorithm (DEA)-based iterative sliding mode control (ISMC) method was proposed for the path tracking problem of three-degree-of-freedom (3-DoF) underactuated ships under external interference, with the nonlinear separate model proposed by mathematical model group (MMG). To improve control quality and enhance robustness of the control system, a swarm intelligence optimization algorithm is used to design a controller parameter optimization system. The DEA was adopted in the system to solve the minimum system evaluation index function, and the optimal controller parameters are acquired. Considering the impact of chattering on the actual project, a chattering measurement function is defined in the controller design and used as an input of the controller parameter optimization system. Finally, the 5446TEU container ship is carried out for simulation. It is verified that the designed controller with strong robustness can effectively deal with the disturbances; meanwhile, the chattering of the output is significantly reduced, and the control rudder angle signal conforms to the actual operation requirements of the ship and is more in line with the engineering reality.

2019 ◽  
Vol 26 (11-12) ◽  
pp. 952-964 ◽  
Author(s):  
Wu Qin ◽  
Wen-Bin Shangguan ◽  
Kegang Zhao

Based on a nonlinear two-degree-of-freedom model of active suspension systems, an approach of the sliding mode control with disturbance observer combining skyhook model sliding mode control with disturbance observer combining is proposed for improving the performance of active suspension systems, and the effectiveness of the proposed approach is validated by the active suspension system plant. Two problems of active suspension systems are solved by using the proposed approach when the tire is excited by the step displacement. One problem is that the suspension deflection of active suspension systems, i.e. the difference between the sprung mass displacement and the unsprung mass displacement, using conventional sliding mode control with disturbance observer not converges to zero in finite time, and the phenomenon of the impact of suspension against the limit block is produced. This problem is solved by providing a reference value of the sprung mass displacement in an active suspension system, which is obtained from the skyhook model. The other problem is that disturbances exist in active suspension systems, which are caused by the inaccurate parameters of stiffness and damping. This problem is solved by designing a disturbance observer to estimate the summation of the disturbances. Finally, the performance indexes of the active suspension system with the sliding mode control with disturbance observer combining skyhook model are calculated and compared with those of using the conventional sliding mode control with disturbance observer and the linear quadratic regulator approach.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Zhe Yang ◽  
Hui Wang ◽  
Defu Lin ◽  
Luyao Zang

A guidance problem for impact time and angle control applicable to cooperative attack is considered based on the sliding mode control. In order to satisfy the impact angle constraint, a line-of-sight rate polynomial function is introduced with four tuning parameters. And the time-to-go derivative with respect to a downrange orientation is derived to minimize the impact time error. Then the sliding mode control surface with impact time and angle constraints is constructed using nonlinear engagement dynamics to provide an accurate solution. The proposed guidance law is easily extended to a nonmaneuvering target using the predicted interception point. Numerical simulations are performed to verify the effectiveness of the proposed guidance law for different engagement scenarios.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaomeng Yin ◽  
Xing Wei ◽  
Lei Liu ◽  
Yongji Wang

With respect to the nonlinear hypersonic vehicle (HV) dynamics, achieving a satisfactory tracking control performance under uncertainties is always a challenge. The high-order sliding mode control (HOSMC) method with strong robustness has been applied to HVs. However, there are few methods for determining suitable HOSMC parameters for an efficacious control of HV, given that the uncertainties are randomly distributed. In this study, we introduce a hybrid fireworks algorithm- (FWA-) based parameter optimization into HV control design to satisfy the design requirements with high probability. First, the complex relation between design parameters and the cost function that evaluates the likelihood of system instability and violation of design requirements is modeled via stochastic robustness analysis. Subsequently, we propose an efficient hybrid FWA to solve the complex optimization problem concerning the uncertainties. The efficiency of the proposed hybrid FWA-based optimization method is demonstrated in the search of the optimal HV controller, in which the proposed method exhibits a better performance when compared with other algorithms.


Sign in / Sign up

Export Citation Format

Share Document