scholarly journals Therapeutic Implications of a Polymethoxylated Flavone, Tangeretin, in the Management of Cancer via Modulation of Different Molecular Pathways

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
El-Shaimaa A. Arafa ◽  
Noura T. Shurrab ◽  
Manal A. Buabeid

Chemotherapeutics can induce oxidative stress, inflammation, apoptosis, mitochondrial dysfunction, and abnormalities in neurotransmitter metabolism leading to toxicity. Because there have been no therapeutic strategies developed to target inflammation and oxidative stress, there is a continuing need for new and improved therapy. As a result, there has been increasing interest in complementary and alternative medicine with anticancer potential. Studies have shown that the antioxidant activities and anti-inflammatory effects of citrus fruits are promising natural phytochemicals in the development of new anticancer agents. Tangeretin is a naturally polymethoxylated flavone compound extracted from the citrus peel that has shown significant intestinal absorption and adequate bioavailability, with the added benefit of promoting longevity. In addition, tangeretin is known to exhibit considerable selective toxicity to many types of cancer cell proliferation such as ovarian, brain, blood, and skin cancer. Evidence indicates that tangeretin acts through several mechanisms including growth inhibition, induction of apoptosis, autophagy, antiangiogenesis, and estrogenic-like effects. Furthermore, tangeretin works through mitigating levels of inflammatory mediators in the immune system. Using tangeretin in combination with clinically applied anticancer drugs could be a good strategy for increasing the efficiency of these agents and protecting noncancerous cells from damage caused by chemotherapy. The purpose of this review is to highlight the protective effects of a novel natural product, tangeretin against chemotherapeutic-induced toxicity. The development of chemoprevention strategies can lead to significant health care improvement in cancer survivors. Thus, study outcomes may attract more investigators to conduct tangeretin-related research and find out potentially significant impacts on health care of cancer patients and decreased health problems associated with chemotherapeutics-induced toxicity.

2018 ◽  
Vol 19 (12) ◽  
pp. 4027 ◽  
Author(s):  
Na Xu ◽  
Yi Lu ◽  
Jumin Hou ◽  
Chao Liu ◽  
Yonghai Sun

Morchella conica Pers. (M. conica) has been used both as a medical and edible mushroom and possesses antimicrobial properties and antioxidant activities. However, the antioxidant properties of polysaccharides purified from M. conica have not been studied. The aim of this study was to investigate the in vitro antioxidant properties of a polysaccharide NMCP-2 (neutral M. conica polysaccharides-2) purified from M. conica, as determined by radical scavenging assay and H2O2-induced oxidative stress in HEK 293T cells. Results showed that NMCP-2 with an average molecular weight of 48.3 kDa possessed a much stronger chelating ability on ferrous ions and a higher ability to scavenge radical scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) than the other purified fraction of NMCP-1 from M. conica. Moreover, 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetra-zolium bromide (MTT) assay showed that NMCP-2 dose-dependently preserved cell viability of H2O2-induced cells. The NMCP-2 pretreated group reduced the generation of reactive oxygen species (ROS) content and increased the mitochondria membrane potential (MMP) levels. In addition, Hoechst 33342 staining revealed cells treated with NMCP-2 declined nuclear condensation. Ultrastructural observation revealed that NMCP-2 pretreatment alleviated the ruptured mitochondria when exposed to H2O2. Furthermore, western blot analysis showed that NMCP-2 prevented significant downregulation of the protein expression of Bax, cleaved caspases 3, and upregulated Bcl-2 levels. These results suggest the protective effects of NMCP-2 against H2O2-induced injury in HEK 293T cells. NMCP-2 could be used as a natural antioxidant of functional foods and natural drugs.


2019 ◽  
Vol 57 (3) ◽  
pp. 188-197
Author(s):  
Carl V. Tyler ◽  
Michael D. Wells ◽  

Abstract Direct support professionals (DSPs) frequently accompany persons with intellectual and other developmental disabilities (IDD) to their health care appointments and could offer valuable insights into potential target areas for health-care improvement. DSPs completed surveys assessing healthcare processes and quality immediately following 118 ambulatory health care encounters involving their patients with IDD. Although DSPs generally judged the quality of health care as good (44%) or excellent (52%), they also observed that physicians directed questions to the DSP that the patient could have answered in 22% of encounters, and noted that physicians failed to ask critical psychosocial information in 24% of encounters. Competency-based training of DSPs around health-care advocacy could significantly improve the quality of health care provided to persons with IDD.


2012 ◽  
Vol 67 (5-6) ◽  
pp. 297-307 ◽  
Author(s):  
Osama M. Ashour ◽  
Ashraf B. Abdel-Naim ◽  
Hossam M. Abdallah ◽  
Ayman A. Nagy ◽  
Ahmed M. Mohamadin ◽  
...  

Doxorubicin (DOX) is an anthracycline antibiotic widely used as a chemotherapeutic agent in the treatment of several tumours. However, its cardiac toxicity limits its use at maximum therapeutic doses. Most studies implicated increased oxidative stress as the major determinant of DOX cardiotoxicity. The local Saudi flora is very rich in a variety of plants of quite known folkloric or traditional medicinal uses. Tribulus macropterus Boiss., Olea europaea L. subsp. africana (Mill.) P. S. Green, Tamarix aphylla (L.) H. Karst., Cynomorium coccineum L., Cordia myxa L., Calligonum comosum L’ Hér, and Withania somnifera (L.) Dunal are Saudi plants known to have antioxidant activities. The aim of the current study was to explore the potential protective effects of methanolic extracts of these seven Saudi plants against DOX-induced cardiotoxicity in rats. Two plants showed promising cardioprotective potential in the order Calligonum comosum > Cordia myxa. The two plant extracts showed potent in vitro radical scavenging and antioxidant properties. They significantly protected against DOX-induced alterations in cardiac oxidative stress markers (GSH and MDA) and cardiac serum markers (CK-MB and LDH activities). Additionally, histopathological examination indicated a protection against DOX-induced cardiotoxicity. In conclusion, C. comosum and C. myxa exerted protective activity against DOX-induced cardiotoxicity, which is, at least partly, due to their antioxidant effect


2006 ◽  
Vol 84 (10) ◽  
pp. 1071-1079 ◽  
Author(s):  
Farong Yu ◽  
Shunqing Lu ◽  
Fahong Yu ◽  
Shutao Feng ◽  
Peter M. McGuire ◽  
...  

The present study examined the effects of derivatives of galactosides and glucosides in a polysaccharide extract from Euphorbia kansui (Euphorbiaceae) on exercise-induced oxidative stress in mice. Exhaustive swimming exercise significantly increases the degree of lipid peroxidation in terms of malondialdehyde content and reduces the antioxidant activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Our findings revealed that chronic oral treatment with the extract elevates enzymatic activities of SOD and GPx accompanied by a corresponding decrease in malondialdehyde. The antioxidative activities of these compounds against exercise-induced oxidative stress are correlated with various activities such as reducing the production of superoxide and hydroxyl radicals, inhibiting lipid peroxidation, enhancing antioxidative defenses, and increasing the production of SOD and GPx activity and expression in different tissues. These compounds may be involved in glycogen metabolism to meet the requirement of working skeletal muscles and act as antioxidants by terminating the chain reaction of lipid peroxidation to maintain the morphological stability of mitochondria in spinal motor neurons. These observations suggest that E. kansui has antioxidative and antifatigue properties and can be given as prophylactic and (or) therapeutic supplements for increasing antioxidant enzyme activities and preventing lipid peroxidation during strenuous exercise.


Sign in / Sign up

Export Citation Format

Share Document