scholarly journals Selection of Outline Descriptors Based on LightGBM with Application to Infrared Image Target Recognition

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xiaohong Hu ◽  
Ziyang Yao

Infrared sensing technology can be well used for night observation, which is becoming an important measure for battlefield reconnaissance. It is a powerful way to implement precision strikes and situational awareness by improving the ability of target recognition based on infrared images. For the problem of infrared image recognition, the Light Gradient Boosting Machine (LightGBM) is employed to select the outline descriptors extracted based on the elliptic Fourier series (EFS), which is combined with sparse representation-based classification (SRC) to achieve target recognition. First, based on the target outlines in the infrared image, the multi-order outline descriptors are extracted to characterize the essential characteristics of the target to be recognized. Then, the LightGBM feature selection algorithm is used to screen the multi-order outline descriptors to reduce redundancy and improve the pertinence of features. Finally, the selected outline descriptors are classified based on SRC. The method effectively improves the effectiveness of the final features through the feature selection of LightGBM and reduces the computational complexity of classification at the same time, which is beneficial to improve the overall recognition performance. The mid-wave infrared (MWIR) dataset of various targets is employed to carry out verification experiments for the proposed method under three different conditions of original samples, noisy samples, and partially occluded samples. By comparing the proposed method with several types of existing infrared target recognition methods, the results show that the proposed method can achieve better performance.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Zhe Zhang ◽  
Cheng Wang ◽  
Yueer Gao ◽  
Jianwei Chen ◽  
Yiwen Zhang

To solve the problems of current short-term forecasting methods for metro passenger flow, such as unclear influencing factors, low accuracy, and high time-space complexity, a method for metro passenger flow based on ST-LightGBM after considering transfer passenger flow is proposed. Firstly, using historical data as the training set to transform the problem into a data-driven multi-input single-output regression prediction problem, the problem of the short-term prediction of metro passenger flow is formalized and the difficulties of the problem are identified. Secondly, we extract the candidate temporal and spatial features that may affect passenger flow at a metro station from passenger travel data based on the spatial transfer and spatial similarity of passenger flow. Thirdly, we use a maximal information coefficient (MIC) feature selection algorithm to select the significant impact features as the input. Finally, a short-term forecasting model for metro passenger flow based on the light gradient boosting machine (LightGBM) model is established. Taking transfer passenger flow into account, this method has a low space-time cost and high accuracy. The experimental results on the dataset of Lianban metro station in Xiamen city show that the proposed method obtains higher prediction accuracy than SARIMA, SVR, and BP network.


2021 ◽  
pp. 22-37
Author(s):  
Han Gao ◽  
Pei Shan Fam ◽  
Lea Tien Tay ◽  
Heng Chin Low

Tree-based gradient boosting (TGB) models gain popularity in various areas due to their powerful prediction ability and fast processing speed. This study aims to compare the landslide spatial prediction performance of TGB models and non-tree-based machine learning (NML) models in Penang Island, Malaysia. Two specific instances of TGB models, eXtreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) and two specific instances of NML models, artificial neural network (ANN) and support vector machine (SVM), are applied to make predictions of landslide susceptibility. Feature selection and oversampling techniques are considered to improve the prediction performance as well. The results are analyzed and discussed mainly based on receiver operating characteristic (ROC) curves as well as the area under the curves (AUC). The results show that TGB models give better prediction performance compared to NML models, no matter what the sample size is. The TGB models’ performances are improved when training with the dataset considering either feature selection or oversampling techniques. The highest AUC value of 0.9525 is obtained from the combination of XGBoost and SMOTE. The landslide susceptibility maps (LSMs) produced by XGBoost and LightGBM can provide valuable information in landslide management and mitigation in Penang Island, Malaysia.


2012 ◽  
Vol 57 (3) ◽  
pp. 829-835 ◽  
Author(s):  
Z. Głowacz ◽  
J. Kozik

The paper describes a procedure for automatic selection of symptoms accompanying the break in the synchronous motor armature winding coils. This procedure, called the feature selection, leads to choosing from a full set of features describing the problem, such a subset that would allow the best distinguishing between healthy and damaged states. As the features the spectra components amplitudes of the motor current signals were used. The full spectra of current signals are considered as the multidimensional feature spaces and their subspaces are tested. Particular subspaces are chosen with the aid of genetic algorithm and their goodness is tested using Mahalanobis distance measure. The algorithm searches for such a subspaces for which this distance is the greatest. The algorithm is very efficient and, as it was confirmed by research, leads to good results. The proposed technique is successfully applied in many other fields of science and technology, including medical diagnostics.


2021 ◽  
pp. 100572
Author(s):  
Malek Alzaqebah ◽  
Khaoula Briki ◽  
Nashat Alrefai ◽  
Sami Brini ◽  
Sana Jawarneh ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 116
Author(s):  
Xiangfa Zhao ◽  
Guobing Sun

Automatic sleep staging with only one channel is a challenging problem in sleep-related research. In this paper, a simple and efficient method named PPG-based multi-class automatic sleep staging (PMSS) is proposed using only a photoplethysmography (PPG) signal. Single-channel PPG data were obtained from four categories of subjects in the CAP sleep database. After the preprocessing of PPG data, feature extraction was performed from the time domain, frequency domain, and nonlinear domain, and a total of 21 features were extracted. Finally, the Light Gradient Boosting Machine (LightGBM) classifier was used for multi-class sleep staging. The accuracy of the multi-class automatic sleep staging was over 70%, and the Cohen’s kappa statistic k was over 0.6. This also showed that the PMSS method can also be applied to stage the sleep state for patients with sleep disorders.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 692
Author(s):  
Jingcheng Chen ◽  
Yining Sun ◽  
Shaoming Sun

Human activity recognition (HAR) is essential in many health-related fields. A variety of technologies based on different sensors have been developed for HAR. Among them, fusion from heterogeneous wearable sensors has been developed as it is portable, non-interventional and accurate for HAR. To be applied in real-time use with limited resources, the activity recognition system must be compact and reliable. This requirement can be achieved by feature selection (FS). By eliminating irrelevant and redundant features, the system burden is reduced with good classification performance (CP). This manuscript proposes a two-stage genetic algorithm-based feature selection algorithm with a fixed activation number (GFSFAN), which is implemented on the datasets with a variety of time, frequency and time-frequency domain features extracted from the collected raw time series of nine activities of daily living (ADL). Six classifiers are used to evaluate the effects of selected feature subsets from different FS algorithms on HAR performance. The results indicate that GFSFAN can achieve good CP with a small size. A sensor-to-segment coordinate calibration algorithm and lower-limb joint angle estimation algorithm are introduced. Experiments on the effect of the calibration and the introduction of joint angle on HAR shows that both of them can improve the CP.


Sign in / Sign up

Export Citation Format

Share Document