scholarly journals Identification and Characterization of a Cryptic Genomic Deletion-Insertion in EYA1 Associated with Branchio-Otic Syndrome

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hao Zheng ◽  
Jun Xu ◽  
Yu Wang ◽  
Yun Lin ◽  
Qingqiang Hu ◽  
...  

Branchio-oto-renal spectrum disorder (BORSD) is characterized by hearing loss accompanied by ear malformations, branchial cysts, and fistulae, with (branchio-oto-renal syndrome (BORS)) or without renal abnormalities (BOS (branchio-otic syndrome)). As the most common causative gene for BORSD, dominant mutations in EYA1 are responsible for approximately 40% of the cases. In a sporadic deaf patient diagnosed as BOS, we identified an apparent heterozygous genomic deletion spanning the first four coding exons and one 5 ′ noncoding exon of EYA1 by targeted next-generation sequencing of 406 known deafness genes. Real-time PCR at multiple regions of EYA1 confirmed the existence of this genomic deletion and extended its 5 ′ boundary beyond the 5 ′ -UTR. Whole genome sequencing subsequently located the 5 ′ and 3 ′ breakpoints to 19268 bp upstream to the ATG initiation codon and 3180 bp downstream to exon 5. PCR amplification across the breakpoints in both the patient and his parents showed that the genomic alteration occurred de novo. Sanger sequencing of this PCR product revealed that it is in fact a GRCh38/hg38:chr8:g.71318554_71374171delinsTGCC genomic deletion-insertion. Our results showed that the genomic variant is responsible for the hearing loss associated with BOS and provided an example for deciphering such cryptic genomic alterations following pipelines of comprehensive exome/genome sequencing and designed verification.


Hereditas ◽  
2020 ◽  
Vol 157 (1) ◽  
Author(s):  
Jing Yu ◽  
Wei Jiang ◽  
Li Cao ◽  
Xiaoxue Na ◽  
Jiyun Yang

AbstractMutations in HARS2 are one of the genetic causes of Perrault syndrome, characterized by sensorineural hearing loss (SNHL) and ovarian dysfunction. Here, we identified two novel putative pathogenic variants of HARS2 in a Chinese family with sensorineural hearing loss including two affected male siblings, c.349G > A (p.Asp117Asn) and c.908 T > C (p.Leu303Pro), through targeted next-generation sequencing methods. The two affected siblings (13 and 11 years old) presented with early-onset, rapidly progressive SNHL. The affected siblings did not have any inner ear malformations or delays in gross motor development. Combined with preexisting clinical reports, Perrault syndrome may be latent in some families with non-syndromic deafness associated with HARS2 mutations. The definitive diagnosis of Perrault syndrome based on clinical features alone is a challenge in sporadic males, and preadolescent females with no signs of POI. Our findings further expanded the existing spectrum of HARS2 variants and Perrault syndrome phenotypes, which will assist in molecular diagnosis and genetic counselling of patients with HARS2 mutations.



2021 ◽  
Author(s):  
Samiul Alam Rajib ◽  
Yasuhiro Ogi ◽  
Md Belal Hossain ◽  
Terumasa Ikeda ◽  
Eiichi Tanaka ◽  
...  

A recent pandemic of SARS-CoV-2 infection has caused severe health problems and substantially restricted social and economic activities. To cope with such an outbreak, the identification of infected individuals with high accuracy is vital. qRT-PCR plays a key role in the diagnosis of SARS-CoV-2 infection. The N protein-coding region is widely analyzed in qRT-PCR for the diagnosis of SARS-CoV-2 infection in Japan. We recently encountered two cases of SARS-CoV-2-positive specimens showing atypical amplification curves in the qRT-PCR. We performed whole-genome sequencing and found that the virus was a Delta-type variant of SARS-CoV-2 with a single nucleotide mutation in the probe-binding site. To evaluate the extent of spread of the variant in the area, we performed whole viral genome sequencing of samples collected from 61 patients infected with SARS-CoV-2 during the same time and in the same area. There were no other cases with the same mutation, indicating that the variant had not spread in the area. Furthermore, we performed phylogenetic analysis with various SARS-CoV-2 sequences deposited in the public database. Hundreds of variants were reported globally, and one in Japan were found to contain the same mutation. Phylogenetic analysis showed that the variant was very close to other Delta variants endemic in Japan but quite far from the variants containing the same mutation reported from outside Japan, suggesting that the variant would have been sporadically generated in some domestic areas. These findings propose two key points: i) mutations in the region used for SARS-CoV-2 qRT-PCR can cause abnormal amplification curves; therefore, the qRT-PCR result should not just be judged in an automated manner, but also manually checked by the examiner to prevent false-negative results, and ii) various mutations can be generated sporadically and unpredictably; therefore, efficient and robust screening systems are needed to promptly monitor the emergence of de novo variants.



2020 ◽  
Author(s):  
jing yu ◽  
Wei jiang ◽  
Li cao ◽  
xiaoxue Na ◽  
jiyun Yang

Abstract Mutations in HARS2 are one of the genetic causes of Perrault syndrome, characterized by sensorineural hearing loss (SNHL) and ovarian dysfunction. Here, we identified two novel putative pathogenic variants of HARS2 in a Chinese family with sensorineural hearing loss including two affected male siblings, c.349G>A (p.Asp117Asn) and c.908T>C (p.Leu303Pro), through targeted next-generation sequencing methods. The two affected siblings (13 and 11 years old) presented with early-onset, rapidly progressive SNHL. The affected siblings did not have any inner ear malformations or delays in gross motor development. Combined with preexisting clinical reports, Perrault syndrome may be latent in some families with non-syndromic deafness associated with HARS2 mutations. The definitive diagnosis of Perrault syndrome based on clinical features alone is a challenge in sporadic males, and preadolescent females with no signs of POI. Our findings further expanded the existing spectrum of HARS2 variants and Perrault syndrome phenotypes, which will assist in molecular diagnosis and genetic counselling of patients with HARS2 mutations.



2021 ◽  
Author(s):  
Yi Jiang ◽  
Lihua Wu ◽  
Shasha Huang ◽  
Pidong Li ◽  
Bo Gao ◽  
...  

X-linked deafness-2 (DFNX2) is cochlear incomplete partition type III (IP-III), one of inner ear malformations characterized by an abnormally wide opening in the bone separating the basal turn of the cochlea from the internal auditory canal, fixation of the stapes and cerebrospinal fluid (CSF) gusher upon stapedectomy or cochleostomy. The causative gene of DFNX2 was POU3F4. To investigate the genetic causes of X-linked deafness-2 (DFNX2) and compare the efficiency of different sequencing methods, twelve unrelated patients were enrolled in this study. Targeted next-generation sequencing (NGS) and long-read sequencing were used to analyze the genetic etiology of DFNX2. Six variants of POU3F4 were identified in this cohort by NGS. Three patients with a negative diagnosis based on NGS were enrolled in further long-read sequencing. Two of them were all found to carry structural variations (SVs) on chromosome X, consisting of an 870-kb deletion (DEL) at upstream of POU3F4 and an 8-Mb inversion (INV). The 870-kb DEL may have been be due to non-homologous end joining, while non-allelic homologous recombination within a single chromatid may have accounted for the 8-Mb INV. Common POU3F4 mutations in DFNX2 included point mutations, small insertions and deletions (INDELs), and exon mutations, which can be detected by Sanger sequencing and NGS. Single-molecule long-read sequencing constitutes an additional and valuable method for accurate detection of pathogenic SVs in IP-III patients with negative NGS results.



2020 ◽  
Author(s):  
jing yu ◽  
Wei jiang ◽  
Li cao ◽  
xiaoxue Na ◽  
jiyun Yang

Abstract HARS2 is one of the genetic causes of Perrault syndrome, characterized by sensorineural hearing loss (SNHL) and ovarian dysfunction. Here, we identified two novel putative pathogenic variants of HARS2 in a Perrault syndrome pedigree including two affected male siblings, c.349G>A (p.Asp117Asn) and c.908T>C (p.Leu303Pro), through targeted next-generation sequencing methods. The two affected siblings (13 and 11 years old) presented with early-onset, rapidly progressive SNHL. The affected siblings did not have any inner ear malformations or delays in gross motor development. Combined with preexisting clinical reports, these findings further expanded the existing spectrum of HARS2 variants and Perrault syndrome phenotypes, which will assist in molecular diagnosis and genetic counselling of patients with Perrault syndrome.



2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brent S. Pedersen ◽  
Joe M. Brown ◽  
Harriet Dashnow ◽  
Amelia D. Wallace ◽  
Matt Velinder ◽  
...  

AbstractIn studies of families with rare disease, it is common to screen for de novo mutations, as well as recessive or dominant variants that explain the phenotype. However, the filtering strategies and software used to prioritize high-confidence variants vary from study to study. In an effort to establish recommendations for rare disease research, we explore effective guidelines for variant (SNP and INDEL) filtering and report the expected number of candidates for de novo dominant, recessive, and autosomal dominant modes of inheritance. We derived these guidelines using two large family-based cohorts that underwent whole-genome sequencing, as well as two family cohorts with whole-exome sequencing. The filters are applied to common attributes, including genotype-quality, sequencing depth, allele balance, and population allele frequency. The resulting guidelines yield ~10 candidate SNP and INDEL variants per exome, and 18 per genome for recessive and de novo dominant modes of inheritance, with substantially more candidates for autosomal dominant inheritance. For family-based, whole-genome sequencing studies, this number includes an average of three de novo, ten compound heterozygous, one autosomal recessive, four X-linked variants, and roughly 100 candidate variants following autosomal dominant inheritance. The slivar software we developed to establish and rapidly apply these filters to VCF files is available at https://github.com/brentp/slivar under an MIT license, and includes documentation and recommendations for best practices for rare disease analysis.



Author(s):  
Seyoung Mun ◽  
Songmi Kim ◽  
Wooseok Lee ◽  
Keunsoo Kang ◽  
Thomas J. Meyer ◽  
...  

AbstractAdvances in next-generation sequencing (NGS) technology have made personal genome sequencing possible, and indeed, many individual human genomes have now been sequenced. Comparisons of these individual genomes have revealed substantial genomic differences between human populations as well as between individuals from closely related ethnic groups. Transposable elements (TEs) are known to be one of the major sources of these variations and act through various mechanisms, including de novo insertion, insertion-mediated deletion, and TE–TE recombination-mediated deletion. In this study, we carried out de novo whole-genome sequencing of one Korean individual (KPGP9) via multiple insert-size libraries. The de novo whole-genome assembly resulted in 31,305 scaffolds with a scaffold N50 size of 13.23 Mb. Furthermore, through computational data analysis and experimental verification, we revealed that 182 TE-associated structural variation (TASV) insertions and 89 TASV deletions contributed 64,232 bp in sequence gain and 82,772 bp in sequence loss, respectively, in the KPGP9 genome relative to the hg19 reference genome. We also verified structural differences associated with TASVs by comparative analysis with TASVs in recent genomes (AK1 and TCGA genomes) and reported their details. Here, we constructed a new Korean de novo whole-genome assembly and provide the first study, to our knowledge, focused on the identification of TASVs in an individual Korean genome. Our findings again highlight the role of TEs as a major driver of structural variations in human individual genomes.



Author(s):  
Jonathan R. Belyeu ◽  
Harrison Brand ◽  
Harold Wang ◽  
Xuefang Zhao ◽  
Brent S. Pedersen ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document