scholarly journals Minerals Filling in Anhydrite Dissolution Pores and Their Origins in the Ordovician Majiagou Formation of the Southeastern Ordos Basin, China

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Lihong Liu ◽  
Chunlian Wang ◽  
Zhili Du ◽  
Jianghua Gong

Mold pore cementation is the key factor constraining the reservoir property in the study area. The anhydrite dissolution pores in the Ordovician Majiagou Formation of southeastern Ordos Basin are commonly filled by minerals such as dolomite, calcite, pyrite, and quartz accounting for more than 90% of the total molds resulting in significant porosity volume reduction. The anhydrite dissolution pores in the Jingbian Gas Field in the middle east of the basin, however, are rarely filled by minerals with more than 30% molds, remaining open to become good reservoir space. Studies reveal that the calcite filling in anhydrite dissolution pores has a relatively negative δ18O value (-15.58‰~-8.96‰ VPDB) and negative δ13C value (-7.56‰~0.26‰ VPDB), which is interpreted to be caused by thermochemical sulfate reduction (TSR). The higher homogenization temperatures (140-234°C) and high salinity (19.13-23.18 wt.% NaCl equivalent) of the primary inclusions in calcite confirm the above interpretation. Dolomite is the second most abundant carbonate formed as by-product of TSR, which is promoted by the precipitation of calcite and resulted enriched in Mg2+/Ca2+ ratio in the pore water. Pyrite forms by the reaction of H2S released from TSR with the Fe2+ in the horizon, which is supported by its cubic habit and relatively high δ34S value (10.50‰~24.00‰VCDT). Quartz with relatively high homogenization temperature (113-154°C) is considered to precipitate in low-pH solution from calcite and pyrite precipitation after TSR. The southeastern Ordos Basin is much lower than the Jingbian Gas Field in paleogeographic location, which is submerged in the sea water of marine phreatic environments for a long time when sea water flooded from the southeastern direction. TSR occurs due to calcium sulfate enriched in pore water resulting in the minerals of dolomite, calcite, pyrite, and quartz filling in the molds leading to the low porosity and permeability of the study area.

2020 ◽  
Author(s):  
Dursun Acar ◽  
M. Sinan Ozeren ◽  
Nazmi Postacioglu ◽  
Sebnem Onder ◽  
Ulku Ulusoy ◽  
...  

<p>During the co-seismic development of a fault in lithological environments, regions containing cavities may form momentarily or permanently. In the tectonic shift zones, these pressure gaps lead to the formation of irregular new intermediate sediment zones, as infiltrate in to the gap, if the pressure perturbations are large. The semi-fluid sediment material and sea water enter through opening fault sector's surrounding sediments at the far place from dispersing fault energy burst. But pore water infiltration is independent about place of vomited energy burst. In some cases hard material which detached from fault wall or top sediment material, provide isolation lids, as obstacling on 'cell type empty interlaying gaps' at tectonic line. They can collapse again or stay as gap form for a long time with suction force after seismic activities by effects of gravitation or pressure perturbations. For durable gaps, pore water is capable to infiltrate in to the gap with long lasting suction forces.  In these regions, in contrast to gravitational folding or collapse structures, the partial sediment sequence may be drawn and folded into the area of the material with different or close lithological density value. Deformational variety of the displaced materials are related with physical properties of seismic event at opening sector such as friction, displacement parameters (velocity, time), dimensional parameters of gap, and water depth.  The main objective of the paper is to figure out all interference mechanisms about these zones (created by pressure perturbations), which develop rapidly during earthquake fractures (or in some cases fractures generated by impulsive pressure changes such as those created by volcanoes). Fracture of fault segments forms a complex mechanical system associated with bedrock, upper sedimentary sequence, and aquatic environment, depending on the location where they occur, even the atmosphere. Therefore, the displacement may be bi-directional to the lower slit or upward from the seabed during the opening or closing stages of the cavity, depending on the nature with variations of the atmosphere & water-sediment mixture. The strong (pulling or impulsive) pressure perturbation effect associated with permanent cavities caused by rapid breakage pulls the material that may form a sludge volcano or water outlet under deformation and brings the environment to near pressure equilibrium. This simple explanation can help to find real additional effective reason for the different formations of assumed collapse or folding structures created by gravitational movements in geology. The hypothesis after main objective at above mentioned in this article is based on the fact that the emergence of  escapes as squeezed fluid form  of water & sediment from compacted secondary irregularities in the previously broken fault segment will help to understand the next seismic mobility in other tectonic segments by identifying source depth cues through physical and chemical analysis. Geophysical instrumentation and applications are still need further developments of compact reflection line information, because the vertical thin anomalies mentioned in this paper are the most difficult structures for detection.</p>


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-25
Author(s):  
Meng Wang ◽  
Hongming Tang ◽  
Haoxuan Tang ◽  
Shu Liu ◽  
Liehui Zhang ◽  
...  

The tight sandstone reservoirs of the Permian Shihezi and Shanxi Formation with strong heterogeneity constitute the main producing zone of the eastern Sulige gas field. The process of differential densification results in various reservoir qualities. Mineral composition, structural characteristic, pore system, and diagenesis were investigated with analyses of well logs, thin sections, porosity, and horizontal permeability of the core plugs; environmental scanning electron microscopy (ESEM); nuclear magnetic resonance (NMR); X-ray computed tomography (X-CT); and fluid inclusion homogenization temperature. The results show that lithic sandstone reservoirs experienced complex and various diagenetic evolutions. Eight types of densification modes can be divided according to the diagenesis paths; these modes represent lithofacies with different densification times and reservoir qualities. Intense mechanical compaction is the main reason for the formation of lithofacies 1, 2, and 5. Lithofacies 4, 6, and 7 formed due to intense cementation, increasing the impermeability of the diagenetic system. The primary pore space in lithofacies 3 is preserved due to the overpressure and chlorite coatings. The dissolution and weak cementation of lithofacies 8 contribute to reservoir development. The middle-lower part of braided channel lags and channel bars, the middle part of meandering riverbed lags, and the middle part of point bars are favourable for reservoir development.


2013 ◽  
Vol 734-737 ◽  
pp. 161-165 ◽  
Author(s):  
Er Ping Fan ◽  
Yue Hong Cheng ◽  
Yuan Zhi Zhang ◽  
Zhen Hua Bai

The rapid lateral variation of fluvial sand-bodies seriously affect the development of oil and gas field. One long-term base-level cycle (LSC), four middle-term base-level cycles (MSC) and nine short-term base level cycles (SSC) are recognized by researching the stacking patterns and volumetric partitioning according to the core, well log and seismic data in He8 member of A gas field, Ordos basin. The base level cycles which are mainly base level rise half cycles are mainly composed of braided and meandering river deposits. The evolution of depositional system has experienced three stages: braided river deposition in the earlier stage, braided and meandering river transition coexistence in the middle stage and only meandering river deposition in later period. The braided channel sand, mid-channel bar and point bar are mainly reservoirs which show belt and ribbon along the SEE trending. These sand-bodies are vertically and laterally stacked with good continuity in the early MSC1, MSC2 and MSC3, while isolated and with poor continutiy in the early MSC4. The sedimentary microfacies and diagenesis affect the fluvial reservoir quality including lateral continuity, porosity and permeability and the buried depth of the good reservoirs with development of secondary solution pores is less than 3500m in this area.


2020 ◽  
pp. 014459872097451
Author(s):  
Wenqi Jiang ◽  
Yunlong Zhang ◽  
Li Jiang

A fluid inclusion petrographic and microthermometric study was performed on the sandstones gathered from the Yanchang Formation, Jiyuan area of the Ordos Basin. Four types of fluid inclusions in quartz can be recognized based on the location they entrapped. The petrographic characteristics indicate that fluid inclusions in quartz overgrowth and quartz fissuring-I were trapped earlier than that in quartz fissuring-IIa and fissuring-IIb. The homogenization temperature values of the earlier fluid inclusions aggregate around 80 to 90°C; exclusively, it is slightly higher in Chang 6 member, which approaches 95°C. The later fluid inclusions demonstrate high homogenization temperatures, which range from 100 to 115°C, and the temperatures are slightly higher in Chang 9 member. The calculated salinities show differences between each member, including their regression characteristics with burial depth. Combining with the vitrinite reflection data, the sequence and parameters of fluid inclusions indicate that the thermal history of the Yanchang formation mostly relied on burial. Salinity changes were associated with fluid-rock interaction or fluid interruption. Hydrocarbon contained fluid inclusions imply that hydrocarbon generation and migration occurred in the Early Cretaceous. The occurrence of late fluid inclusions implied that quartz cement is a reservoir porosity-loose factor.


2016 ◽  
Vol 57 (7) ◽  
pp. 1064-1077 ◽  
Author(s):  
Ding Xiaoqi ◽  
Yang Peng ◽  
Han Meimei ◽  
Chen Yang ◽  
Zhang Siyang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document