scholarly journals Deep-Learning-Based MRI Images for Analysis of Sport-Induced Ankle Joint Injury

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wenbo Zhang

This study was to analyze the sport-induced ankle joint injury (AJI) images based on the neural network algorithms using the magnetic resonance imaging (MRI). 20 patients and 20 volunteers were included in the experimental and control groups, respectively. The hybrid diffusion equation (HDE) neural network (HDENN) algorithm was compared with the fully convolutional neural network (FCNN) and the FCNN preprocessing, and the HDE was applied to the MRI analysis of sport-induced AJI. The results showed that the total score of MRI image for the conventional position of the anterior talofibular ligament (ATFL) and posterior talofibular ligament (PTFL) was concentrated in 4 (55%) and 5 (65%), respectively. The number of patients with good prognosis with grade II injury (11 cases) was much higher than that of grade III injury (2 cases), and the number of patients with poor prognosis (4 cases) was lower than that of grade III injury (6 cases) ( P < 0.05 ). Conventional MRI was recommended to observe the ATFL and PTFL, and the valgus position MRI was recommended for the calcaneofibular ligament (CFL); conservative treatment was recommended for patients with grades I and II AJI, but surgical treatment was recommended for patients with grade III AJI.

2019 ◽  
pp. S453-S458
Author(s):  
R. Krupička ◽  
S. Mareček ◽  
C. Malá ◽  
M. Lang ◽  
O. Klempíř ◽  
...  

Neuromelanin (NM) is a black pigment located in the brain in substantia nigra pars compacta (SN) and locus coeruleus. Its loss is directly connected to the loss of nerve cells in this part of the brain, which plays a role in Parkinson’s Disease. Magnetic resonance imaging (MRI) is an ideal tool to monitor the amount of NM in the brain in vivo. The aim of the study was the development of tools and methodology for the quantification of NM in a special neuromelanin-sensitive MRI images. The first approach was done by creating regions of interest, corresponding to the anatomical position of SN based on an anatomical atlas and determining signal intensity threshold. By linking the anatomical and signal intensity information, we were able to segment the SN. As a second approach, the neural network U-Net was used for the segmentation of SN. Subsequently, the volume characterizing the amount of NM in the SN region was calculated. To verify the method and the assumptions, data available from various patient groups were correlated. The main benefit of this approach is the observer-independency of quantification and facilitation of the image processing process and subsequent quantification compared to the manual approach. It is ideal for automatic processing many image sets in one batch.


2018 ◽  
Vol 47 (2) ◽  
pp. 431-437 ◽  
Author(s):  
Kenneth J. Hunt ◽  
Helder Pereira ◽  
Judas Kelley ◽  
Nicholas Anderson ◽  
Richard Fuld ◽  
...  

Background: Acute inversion ankle sprains are among the most common musculoskeletal injuries. Higher grade sprains, including anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) injury, can be particularly challenging. The precise effect of CFL injury on ankle instability is unclear. Hypothesis: CFL injury will result in decreased stiffness, decreased peak torque, and increased talar and calcaneal motion and will alter ankle contact mechanics when compared with the uninjured ankle and the ATFL-only injured ankle in a cadaveric model. Study Design: Descriptive laboratory study. Methods: Ten matched pairs of cadaver specimens with a pressure sensor in the ankle joint and motion trackers on the fibula, talus, and calcaneus were mounted on a material testing system with 20° of ankle plantarflexion and 15° of internal rotation. Intact specimens were axially loaded to body weight and then underwent inversion along the anatomic axis of the ankle from 0° to 20°. The ATFL and CFL were sequentially sectioned and underwent inversion testing for each condition. Linear mixed models were used to determine significance for stiffness, peak torque, peak pressure, contact area, and inversion angles of the talus and calcaneus relative to the fibula across the 3 conditions. Results: Stiffness and peak torque did not significantly decrease after sectioning of the ATFL but decreased significantly after sectioning of the CFL. Peak pressures in the tibiotalar joint decreased and mean contact area increased significantly after CFL release. Significantly more inversion of the talus and calcaneus as well as calcaneal medial displacement was seen with weightbearing inversion after sectioning of the CFL. Conclusion: The CFL contributes considerably to lateral ankle instability. Higher grade sprains that include CFL injury result in significant decreases in rotation stiffness and peak torque, substantial alteration of contact mechanics at the ankle joint, increased inversion of the talus and calcaneus, and increased medial displacement of the calcaneus. Clinical Relevance: Repair of an injured CFL should be considered during lateral ligament reconstruction, and there may be a role for early repair in high-grade injuries to avoid intermediate and long-term consequences of a loose or incompetent CFL.


2021 ◽  
Vol 9 (11) ◽  
pp. 232596712110472
Author(s):  
Han Yang ◽  
Minghao Su ◽  
Zhimin Chen ◽  
Rongmei Qu ◽  
Zhirong Yuan ◽  
...  

Background: The anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) contribute greatly to the overall stability of the ankle joint; however, ATFL and combined ATFL-CFL sprains are common. Anatomic reconstruction of the lateral collateral ligament with grafts has been proposed for patients with poor tissue quality or inadequate local tissue. Anatomic reconstruction of the lateral ankle ligaments requires a good understanding of their anatomic location. Purpose: To describe the anatomy of the ATFL and CFL ligaments quantitatively and qualitatively and explore the relationship of some morphological parameters. Study Design: Descriptive laboratory study. Methods: A total of 66 adult ankle specimens were analyzed for ATFL band type, origin, length, width, thickness, and angle between the ATFL and CFL, and 73 adult ankle specimens were used for measuring the origin of the CFL. The coefficient of variation was used to describe and compare the respective variability of angle, length, width, and thickness. The origin of the ATFL was labeled as point A, and the leading edge of the CFL intersection with the articular surface of the calcaneus was considered point B. Results: The ATFL had a variable number of bands. A high degree of variability (coefficient of variation >0.2) was seen for most morphological measurements of the ATFL. In addition, the length of distance AB also varied. The CFL originated at the tip of the fibula in only 9% of specimens. It was found more commonly at the anterior border of the lateral malleolus (4.94 ± 1.70 mm from the tip). The angle between the ATFL and CFL was consistent at 100° to 105º. Conclusion: A fair amount of variability of ATFL length, width, and thickness were found in our study, with less variability in the ATFL-CFL angle. Most CFLs attached anterior to the tip of the fibula. Clinical Relevance: Providing relevant anatomic data of ATFL and CFL is important in ensuring proper surgical treatment of ankle joint injuries.


1990 ◽  
Vol 112 (2) ◽  
pp. 129-137 ◽  
Author(s):  
S. Siegler ◽  
Jie Chen ◽  
C. D. Schneck

Injuries to the lateral collateral ligaments of the ankle joint are among the most frequently occurring injuries at the lower limb. The present study was conducted for the purpose of establishing the basis for the development of a quantitative diagnostic procedure for such injuries. To achieve this goal, the effect of four types of ligament injuries on the three-dimensional mechanical characteristics of the ankle were investigated. These types of injuries consisted of: 1) isolated tear of the anterior talofibular ligament; 2) isolated tear of the calcaneofibular ligament; 3) isolated tear of the posterior talofibular ligament; and 4) combined tear of both the anterior talofibular ligament and the calcaneofibular ligament. The experiments were conducted on 31 amputated lower limbs and consisted of comparing the three-dimensional load-displacement and flexibility characteristics of the ankle joint prior to and following sectioning of selected ligaments. The experimental and analytical procedures used to derive these characteristics was developed previously by the authors [3, 24]. From the results of this study it was concluded that the three-dimensional flexibility characteristics of the ankle joint are strongly influenced by damage to the lateral collateral ligaments. Furthermore, it was found that each type of ligament injury produced unique and identifiably changes in the flexibility characteristics of the ankle. These unique changes, which are described in detail in this paper, can be used to discriminate between the different types of ligament injuries. Consequently, it was concluded that it is feasible to develop a quantitative diagnostic procedure for ankle ligament injuries based on the effect of the injury on the flexibility characteristics of the ankle.


2017 ◽  
Vol 54 (3) ◽  
pp. 487-490
Author(s):  
Alina Maria Sisu ◽  
Gheorghe Noditi ◽  
Dan Grigorescu ◽  
Sorin Floresc ◽  
Jenel Marian Patrascu ◽  
...  

The present research was made by following three directions: dissection and plastination, clinical ankle joint ligament injuries and MRI and CT examination of the cases.191 cases of ankle joint ligament injuries have been studied during two years. They were examined clinically and radiologically, using CT and MRI testing. The classification of ankle sprain was based on the number of injured ligaments. Out of the 191 cases diagnosed with ligament injuries, 92 involved the anterior talofibular ligament, 54 in the calcaneofibular ligament, 40 involved the posterior talofibular ligament and 5 involved the deltoid ligament. First degree sprain involves the injury of the anterior talofibular ligament, the second degree sprain involves the injury of the anterior talofibular ligament and of the calcaneofibular ligament, and the third degree sprain involves the damaging of anterior and posterior talofibular ligaments, as well as the calcaneofibular ligament. In this paper we have diagnosed a number of 39 first degree springs, 12 of second degree springs and 41 of third degree springs. The standard X- ray examinations have a low diagnostic rate of the ankle ligament injuries. Conventional MRI has a higher accuracy in diagnosing ankle joint collateral ligaments lesions.


1982 ◽  
Vol 11 (2) ◽  
pp. 77-81 ◽  
Author(s):  
O Rasmussen ◽  
K Andersen

For analysing the ligaments of the ankle joint, their function, and the traumatic mechanisms which cause them to rupture, an apparatus was developed which enables graphic registration of rotatory movements in the ankle joint in two planes simultaneously, when a given torque is applied to the talus. In a modified form, this apparatus is applicable also for other joints. A lever with strain gauges and potentiometers is fixed in the talus of an osteoligamentous preparation. The lever is moved manually, and signals from the strain gauges and potentiometers are collected by a microcomputer for later transfer to a computer service centre where the mobility at the chosen torque is calculated and plotted as mobility patterns. The appearance of these patterns depends upon which ligaments are intact. The patterns plotted in any situation are reproducible, provided that the state of the ligaments is unchanged. In cutting experiments it was possible to demonstrate that rupture of the anterior talofibular ligament may occur simultaneously with partial rupture of the posterior talofibular ligament, although the calcaneofibular ligament remains intact. This occurs if the distortion trauma causing the rupture consists of an internal rotation of the talus, not if it consists mainly of a tilting of the talus in the ankle mortise.


2021 ◽  
pp. 028418512110210
Author(s):  
Yeon Gyu Choi ◽  
Hee Jin Park ◽  
Ji Na Kim ◽  
Myung Sub Kim ◽  
Se Jin Park ◽  
...  

Background The evaluation of correlations among joint effusion, ligament injuries, tenosynovitis and osteochondral lesion of talus (OLT) in the ankle joint is important for developing a treatment plan and predicting prognosis. Purpose To evaluate correlations among tibiotalar (anterior) and talocalcaneal (posterior) joint effusion, tenosynovitis of major flexor tendons, ligaments, and OLT in a group of patients with ankle trauma. Material and Methods This retrospective study included 101 patients with ankle trauma who underwent magnetic resonance imaging. Two radiologists assessed the presence and amount of effusion in the tibiotalar and talocalcaneal joints from grade 0 to 2, according to the amount of capsular distension. Concomitant structural injuries were assessed in the tibialis posterior (TP), flexor digitorum longus, flexor hallucis longus, and peroneus tendons, and the anterior talofibular ligament, calcaneofibular ligament, anteroinferior tibiofibular ligament, posteroinferior tibiofibular ligament, and OLT. Results The proportion of anterior and posterior joint effusion according to grade was 67.3% for anterior joint effusion grade 0, 22.8% for grade 1, and 9.9% for grade 2; for posterior joint effusion, grade 0 was 74.2%, grade 1 was 22.8%, and grade 2 was 3.0%. We found statistically significant correlations between posterior joint effusion and tenosynovitis of TP ( P < 0.05) and between posterior joint effusion and OLT ( P < 0.05). Conclusion Posterior joint effusion is correlated with TP injury and OLT; however, tendon injuries have no correlation with other structural injuries of the ankle joint in a general population with ankle trauma.


1994 ◽  
Vol 33 (01) ◽  
pp. 157-160 ◽  
Author(s):  
S. Kruse-Andersen ◽  
J. Kolberg ◽  
E. Jakobsen

Abstract:Continuous recording of intraluminal pressures for extended periods of time is currently regarded as a valuable method for detection of esophageal motor abnormalities. A subsequent automatic analysis of the resulting motility data relies on strict mathematical criteria for recognition of pressure events. Due to great variation in events, this method often fails to detect biologically relevant pressure variations. We have tried to develop a new concept for recognition of pressure events based on a neural network. Pressures were recorded for over 23 hours in 29 normal volunteers by means of a portable data recording system. A number of pressure events and non-events were selected from 9 recordings and used for training the network. The performance of the trained network was then verified on recordings from the remaining 20 volunteers. The accuracy and sensitivity of the two systems were comparable. However, the neural network recognized pressure peaks clearly generated by muscular activity that had escaped detection by the conventional program. In conclusion, we believe that neu-rocomputing has potential advantages for automatic analysis of gastrointestinal motility data.


Sign in / Sign up

Export Citation Format

Share Document