scholarly journals Dynamic Wave-Induced Settlement Behavior of a Caisson Breakwater Built on a Sandy Seabed

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Gichun Kang ◽  
Tae-Hyung Kim ◽  
Jiseong Kim ◽  
Seong-Kyu Yun

Monitored breakwater settlements taken from an actual breakwater structure over an extended period of time (more than five years) were analyzed. The analysis revealed that the waves clearly affect the settlement of the breakwater, especially during high wave conditions such as typhoons. Breakwater settlement is caused by a decrease of effective stress of seabed during partial liquefaction due to wave-induced cyclic loads, which occurs due to an increase in excess pore pressure and the combination of oscillatory and residual pore water pressures. A new combined numerical model was suggested that allows the storm wave-induced seabed settlement underneath the caisson breakwater to be examined qualitatively. The technique uses a combined wave model (2D-NIT) and soil model (FLIP). The dynamic wave load calculated by the 2D-NIT was used as the input data for the soil model. This soil model can simulate both oscillatory and residual pore water pressures at the same time. There is a different feature to other previous studies adopting similar techniques.

2020 ◽  
Vol 95 ◽  
pp. 102041 ◽  
Author(s):  
Qibo Zhang ◽  
Hualing Zhai ◽  
Pandi Wang ◽  
Shaohua Wang ◽  
Lunliang Duan ◽  
...  

Author(s):  
Hao Chen ◽  
Jinhai Zheng ◽  
Qianzhen Li ◽  
Naiyu Zhang ◽  
Hanyi Chen ◽  
...  

As the unexpected wave-induced seabed instability may cause foundation failure, the evaluation of wave-induced pore pressure and effective stress in seabed plays an important role in the design of the foundation of marine structures. In this study, a two-dimensional integrated mathematical model, based on COBRAS wave model and SWANDYNE seabed model is developed to numerically investigate the mechanism of wave-induced seabed response in the vicinity of a permeable submerged breakwaters. Numerical results indicate that this model has a great ability in predicting the dynamic response of the pore pressure and effective stress around the breakwater. Both the pore fluid pressure and effective stress in seabed largely changes with an increasing water depth. It is also found that the responses of the pore pressure and effective stress of different locations to the dynamic wave loading are significantly different in the cases with variable top width of the breakwater.


2019 ◽  
Vol 7 (7) ◽  
pp. 237 ◽  
Author(s):  
Shaohua Wang ◽  
Pandi Wang ◽  
Hualing Zhai ◽  
Qibo Zhang ◽  
Linya Chen ◽  
...  

In this paper, the results of a series of experiments on wave-induced pore-water pressures around a mono-pile are presented. Unlike the previous study, in which the mono-pile was fully buried, the mono-pile in this study was installed at 0.6 m below the seabed surface. In this study, we focus on the pore-water pressures around the mono-pile and beneath the pile. The experimental results lead to the following conclusions: (1) the seabed response is more pronounced near the surface (in the region above 30 cm deep), and the rate of pore pressure attenuation gradually slows down. For the region below 0.3 m, the response is much smaller; (2) in general, along the surface of the pile, pore pressures increase as the wave height and wave period increase; (3) the spatial distribution of pore pressure near the pile will vary with different wave periods, while the wave height only has a significant effect on the amplitude; and (4) At z = −0.15 m, the pore pressure in front of the pile is the largest, while at the point 0.1 m below the bottom of the pile, the largest pore pressure occurs behind the pile.


1989 ◽  
Vol 111 (1) ◽  
pp. 1-11 ◽  
Author(s):  
W. G. McDougal ◽  
Y. T. Tsai ◽  
P. L-F. Liu ◽  
E. C. Clukey

1980 ◽  
Vol 17 (4) ◽  
pp. 607-612 ◽  
Author(s):  
Luis E. Vallejo

A new approach to the stability analysis of thawing slopes at shallow depths, taking into consideration their structure (this being a mixture of hard crumbs of soil and a fluid matrix), is presented. The new approach explains shallow mass movements such as skin flows and tongues of bimodal flows, which usually take place on very low slope inclinations independently of excess pore water pressures or increased water content in the active layer, which are necessary conditions in the methods available to date to explain these movements.


2014 ◽  
Vol 56 (2) ◽  
pp. 1450008-1-1450008-21 ◽  
Author(s):  
Tomoaki Nakamura ◽  
Yuta Nezasa ◽  
Yong-Hwan Cho ◽  
Ryo Ishihara ◽  
Norimi Mizutani

2012 ◽  
Vol 193-194 ◽  
pp. 1010-1013
Author(s):  
Shu Qing Zhao

The construct to precast pile in thick clayey soil can cause the accumulation of excess pore water pressure. The high excess pore pressure can make soil, buildings and pipes surrounded have large deflection, even make them injured. Combining with actual projects, this paper presents an in-situ model test on the changes of excess pore water pressure caused by precast pile construct. It is found that the radius of influence range for single pile driven is about 15m,the excess pore water pressure can reach or even exceed the above effective soil pressure, and there are two relatively stable stages.


2000 ◽  
Vol 37 (2) ◽  
pp. 449-462 ◽  
Author(s):  
Charles Harris ◽  
Antoni G Lewkowicz

Active-layer detachment slides are locally common on Fosheim Peninsula, Ellesmere Island, where permafrost is continuous, the active layer is 0.5-0.75 m thick, and summer temperatures are unusually high in comparison with much of the Canadian High Arctic. In this paper we report pore-water pressures at the base of the active layer, recorded in situ on two slopes in late July and early August 1995. These data form the basis for slope stability analyses based on effective stress conditions. During fieldwork, the factor of safety within an old detachment slide on a slope at Hot Weather Creek was slightly greater than unity. At "Big Slide Creek," on a slope showing no evidence of earlier detachment failures, the factor of safety was less than unity on a steep basal slope section but greater than unity elsewhere. In the upper slope, pore-water pressures were only just subcritical. Sensitivity analyses demonstrate that the stability of the shallow active layer is strongly influenced by changes in soil shear strength. Possible mechanisms for reduction in shear strength through time include weathering of soils and gradual increases in basal active layer ice content. However, we suggest here that soil shearing during annual gelifluction movements is most likely to progressively reduce shear strengths at the base of the active layer from peak values to close to residual, facilitating the triggering of active-layer detachment failures.Key words: detachment slides, Ellesmere Island, pore-water pressures, gelifluction.


2014 ◽  
Vol 716-717 ◽  
pp. 284-288
Author(s):  
Jian Kang Yang ◽  
Hua Huang ◽  
Lin Guo ◽  
Jing Rong Lin ◽  
Qing Yong Zhu ◽  
...  

Theoretical investigations on cnoidal waves interacting with breakwater resting on permeable elastic seabed are presented in this paper. Based on the shallow water reflected wave theory and Biot consolidation theory on wave-induced seepage pressure, the analytical solutions to first order cnoidal wave reflection and wave-induced seepage pressure are obtained by the eigenfunction expansion approach. Numerical results are presented to show the effects of depth of water, breakwater geometry on cnoidal wave-induced seepage uplift force and overturning moment. Compared with Airy wave theory, in certain shallow water conditions, the shallow water wave theory can more effectively illustrate wave nonlinearity effect in wave load prediction.


Sign in / Sign up

Export Citation Format

Share Document