scholarly journals Interfacial Bond Properties between Normal Strength Concrete and Epoxy Resin Concrete

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Nannan Sun ◽  
Yifan Song ◽  
Wei Hou ◽  
Hanhao Zhang ◽  
Datong Wu ◽  
...  

It is necessary to pay attention to the bonding strength of the interface between precast normal strength concrete (NSC) and cast-in-place epoxy resin concrete (EMR) when using EMR as a repair or filling material or an overlay in bridges’ rehabilitation. However, the performances of epoxy concrete are different due to differential mix ratios; thus, the bonding properties between various epoxy resin concrete and cement concrete are not completely the same. This article investigated the interfacial bond properties between NSC and ERC by direct tensile, push-out, and slant shear test with specimens of special size and structure and observed the interfacial bond strength and corresponding failure modes. The minimum bond strength under direct tension was 0.72 MPa, while the minimum bond strength was 1.71 MPa and 3.19 MPa for the push-out test and slant shear test, respectively. Results indicated that the slant shear test specimens with an inclination angle of 45° are not suitable for the slant shear test due to higher compressive stress. Furthermore, the cohesion and friction coefficient of interface bond strength were calculated inversely in accordance with the results obtained from the corresponding direct tensile and slant shear tests. The minimum cohesion value was 1.71 MPa, and the minimum friction coefficient value was 0.46.

2000 ◽  
Vol 9 (3) ◽  
pp. 096369350000900 ◽  
Author(s):  
E. Mδder ◽  
X.-F. Zhou ◽  
E. Pisanova ◽  
S. Zhandarov ◽  
S. R. Nutt

Interfacial bond strength between epoxy resin and glass fibre was studied using the pull-out and push-out techniques. For untreated fibres, these micromechanical tests gave similar values of the local interfacial shear strength and critical energy release rate. In the case of fibres treated by γ-APS, both tests showed considerable increase in the bond strength. However, for the modified fibres, the pull-out test gave greater values of both interfacial parameters than the push-out test, a result attributed to the different modes of interfacial loading. The different loading patterns also cause different failure mechanisms in these two tests.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1159
Author(s):  
Sungwon Kim ◽  
Hyemin Hong ◽  
Jun Kil Park ◽  
Sangmin Park ◽  
Seoung Ik Choi ◽  
...  

This study aims to investigate the effects of different exposure conditions on the interfacial bond between steel plates and epoxy resin coatings at early ages. Test variables include the epoxy resin types, exposure conditions, exposure periods, and coating equipment. The selected epoxy resins were applied to prepared steel plates and cured at each exposure condition for 7, 28, 56, or 91 days, and the pull-off bond strength and coating thickness were measured. Scanning electron microscopy (SEM) images were obtained to study the interfacial bond for some representative coatings. Three different exposure conditions (indoors and actual marine environment) were considered in this study. This study is also focusing on the improvement of previously developed underwater coating equipment and evaluating the performance. Experiments were conducted to evaluate the performance of the improved equipment types under different environmental conditions: indoors (tap water and seawater) and outdoor conditions. The improved equipment types were confirmed to be effective for underwater coating and easier to use than the previous equipment under real sea conditions. The experimental results also confirmed that the bond strength of the coating decreased as the curing time increased.


2020 ◽  
Vol 10 (7) ◽  
pp. 2535
Author(s):  
Hyoung-Sik Kim ◽  
Song-Yi Yang ◽  
Eun Ha Choi ◽  
Kwang-Mahn Kim ◽  
Jae-Sung Kwon

The purpose of the study was to evaluate the adhesion between dental core resin and epoxy resin-based fiber post after treatment with non-thermal atmospheric pressure plasma (NTAPP) and compare with conventional methods of epoxy resin-based fiber post treatments. Contact angle was measured on the surface of epoxy resin before and after NTAPP treatment and X-ray photoelectron spectroscopy was used to analyze the surface chemistry. Finally, two shear bond strength tests were carried out; shear bond strength between core resin and epoxy resin for comparison between NTAPP treated and untreated sample, and push-out shear bond strength between core resin and NTAPP treated commercially available epoxy resin-based fiber post for comparison between NTAPP treated samples with conventionally treated samples. Contact angle on the surface of epoxy resin generally decreased with increasing NTAPP treatment time with presence of surface chemical changes. Also, there was significantly higher shear bond strength and push-out shear bond strength between epoxy resin and core resin for NTAPP treated epoxy resin, even to the conventionally treated epoxy resin-based fiber post with hydrofluoric acid or silane. In conclusion, new technology of NTAPP has potential for application on the epoxy resin-based fiber post to improve endodontic restoration success rate.


2017 ◽  
Vol 11 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Hamidreza Yavari ◽  
Shahriar Shahi ◽  
Saeedeh Galledar ◽  
Mohammad Samiei ◽  
Maryam Janani

Sign in / Sign up

Export Citation Format

Share Document