scholarly journals A Review on Computational Fluid Dynamics Applications in the Design and Optimization of Crossflow Hydro Turbines

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hamisi Ally Mrope ◽  
Yusufu Abeid Chande Jande ◽  
Thomas T. Kivevele

In recent years, advances in using computational fluid dynamics (CFD) software have greatly increased due to its great potential to save time in the design process compared to experimental testing for data acquisition. Additionally, in real-life tests, a limited number of quantities are measured at a time, while in a CFD analysis all desired quantities can be measured at once, and with a high resolution in space and time. This article reviews the advances made regarding CFD modeling and simulation for the design and optimization of crossflow hydro turbines (CFTs). The performance of these turbines depends on various parameters like the number of blades, tip speed ratio, type of airfoil, blade pitch, chord length and twist, and its distribution along the blade span. Technical aspects of the model design, which include boundary conditions, solution of the governing equations of the water flow through CFTS, and the assumptions made during the simulations are thoroughly described. From the review, a clear idea on the suitability of the accuracy CFD applications in the design and optimization of crossflow hydro turbines has been provided. Therefore, this gives an insight that CFD is a useful and effective tool suitable for the design and optimization of CFTs.

2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Chaoyong Zong ◽  
Fengjie Zheng ◽  
William Dempster ◽  
Dianjing Chen ◽  
Xueguan Song

Abstract A pressurized vessel-pipe-safety valve (PVPSV) system is a common configuration for many energy management systems, and a better understanding of their dynamics is helpful for system design and optimization. In this paper, a method for high-fidelity computational fluid dynamics (CFD) modeling is presented, which can be used to predict dynamic responses of PVPSV systems. For modeling, regions from the vessel outlet to the safety valve exit flange are modeled using a CFD approach; the pressure vessel is set as the boundary and the movement of the valve disk is represented by a one-dimensional (1D) rigid body motion model. Simulations are performed, and both stable and unstable operation are investigated. To establish accuracy, an experimental test rig is designed and constructed to measure the motion of the valve disk and the pressures at different system locations. Comparisons are performed for different dynamic modes and good agreement is obtained, supporting the accuracy of the high-fidelity model in reproducing the dynamic response of PVPSV systems. With the developed model, influences of other variables, such as piping length and safety valve configurations, can also be evaluated. The method presented in this paper can also be used to develop CFD models for other similar systems and should facilitate system design and optimization.


2019 ◽  
Vol 11 (9) ◽  
pp. 168781401987831 ◽  
Author(s):  
Mohamed G Khalafallah ◽  
Abdelnaby M Ahmed ◽  
Mohamed K Emam

One of the recent methods to improve the performance of horizontal axis wind turbine is to attach a winglet at the tip of the blade of these turbines. Winglets reduce the effect of vortex flow at the blade tip and thus improve the performance of the blade. This article presents a parametric study using the computational fluid dynamics (CFD) modeling to investigate the capability of a winglet to increase the turbine power of swept blades as well as straight blades of a horizontal axis wind turbine. The effects of winglet direction, cant angle, and twist angle are studied for two winglet orientations: upstream and downstream directions. The numerical simulation was performed using ANSYS Fluent computational fluid dynamics code. A three-dimensional computational domain, cylindrical rotationally periodic, was used in the computations. The k-ω shear-stress transport turbulence model was adopted to demonstrate turbulence in the flow. Results show that horizontal axis wind turbine with winglet and sweep could enhance more power compared to their equivalent straight or swept blade. The best improvement in the coefficient of power is 4.39% at design tip speed ratio. This is achieved for downstream swept blades with winglets pointing in the upstream direction and having cant and twist angles of 40° and 10°, respectively.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 79
Author(s):  
Minghan Luo ◽  
Wenjie Xu ◽  
Xiaorong Kang ◽  
Keqiang Ding ◽  
Taeseop Jeong

The ultraviolet photochemical degradation process is widely recognized as a low-cost, environmentally friendly, and sustainable technology for water treatment. This study integrated computational fluid dynamics (CFD) and a photoreactive kinetic model to investigate the effects of flow characteristics on the contaminant degradation performance of a rotating annular photoreactor with a vacuum-UV (VUV)/UV process performed in continuous flow mode. The results demonstrated that the introduced fluid remained in intensive rotational movement inside the reactor for a wide range of inflow rates, and the rotational movement was enhanced with increasing influent speed within the studied velocity range. The CFD modeling results were consistent with the experimental abatement of methylene blue (MB), although the model slightly overestimated MB degradation because it did not fully account for the consumption of OH radicals from byproducts generated in the MB decomposition processes. The OH radical generation and contaminant degradation efficiency of the VUV/UV process showed strong correlation with the mixing level in a photoreactor, which confirmed the promising potential of the developed rotating annular VUV reactor in water treatment.


2021 ◽  
Vol 2021 (6) ◽  
pp. 5421-5425
Author(s):  
MICHAL RICHTAR ◽  
◽  
PETRA MUCKOVA ◽  
JAN FAMFULIK ◽  
JAKUB SMIRAUS ◽  
...  

The aim of the article is to present the possibilities of application of computational fluid dynamics (CFD) to modelling of air flow in combustion engine intake manifold depending on airbox configuration. The non-stationary flow occurs in internal combustion engines. This is a specific type of flow characterized by the fact that the variables depend not only on the position but also on the time. The intake manifold dimension and geometry strongly effects intake air amount. The basic target goal is to investigate how the intake trumpet position in the airbox impacts the filling of the combustion chamber. Furthermore, the effect of different distances between the trumpet neck and the airbox wall in this paper will be compared.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Michael P. Kinzel ◽  
Jules W. Lindau ◽  
Robert F. Kunz

This effort investigates advancing cavitation modeling relevant to computational fluid dynamics (CFD) through two strategies. The first aims to reformulate the cavitation models and the second explores adding liquid–vapor slippage effects. The first aspect of the paper revisits cavitation model formulations with respect to the Rayleigh–Plesset equation (RPE). The present approach reformulates the cavitation model using analytic solutions to the RPE. The benefit of this reformulation is displayed by maintaining model sensitivities similar to RPE, whereas the standard models fail these tests. In addition, the model approach is extended beyond standard homogeneous models, to a two-fluid modeling framework that explicitly models the slippage between cavitation bubbles and the liquid. The results indicate a significant impact of slip on the predicted cavitation solution, suggesting that the inclusion of such modeling can potentially improve CFD cavitation models. Overall, the results of this effort point to various aspects that may be considered in future CFD-modeling efforts with the goal of improving the model accuracy and reducing computational time.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1285
Author(s):  
Sarah Letaïef ◽  
Pierre Camps ◽  
Thierry Poidras ◽  
Patrick Nicol ◽  
Delphine Bosch ◽  
...  

A test site located along a 12-lane motorway east of Montpellier, France, is used to evaluate the potential of biomagnetic monitoring on traffic-related particulate matter (PM) to parametrize a computational fluid dynamics (CFD) simulation of the local airflow. Two configurations were established on the site with three vegetated flat-top earth berms of a basic design, and a fourth one was located windward to the traffic roofed with a 4-m-high precast concrete wall. As a first step, PM deposition simultaneously on plant leaves, on low-cost passive artificial filters, and on soils was estimated from proxies supplied by magnetic and X-ray fluorescence measurements on both sides of the motorway. These latter revealed that traffic-related pollutants are present on soils samples highlighted with a clear fingerprint of combustion residues, and wears of breaks, vehicles, and highway equipment. Maximum PM accumulations were detected in the lee of the berm–wall combination, while no significant deposition was observed on both sides of the flat-top earth berms. These results are in line with measurements from PM µ-sensors operated by the regional state-approved air quality agency. Finally, we compared the experimental measurements with the outcomes of a computational fluid dynamics (CFD) modeling based on the Reynolds-Averaged Navier–Stokes (RANS) equations that consider the traffic-induced momentum and turbulence. The CFD modeling matches the experimental results by predicting a recirculated flow in the near wake of the berm–wall combination that enhances the PM concentration, whereas the flat-top berm geometry does not alter the pollutants’ transport and indeed contributes to their atmospheric dispersion.


Sign in / Sign up

Export Citation Format

Share Document