scholarly journals Experimental Study on Water-Sand Seepage Characteristics in Fractured Rock Mass under Rheological Effect

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jiarui Chen ◽  
Hai Pu ◽  
Jianxiong Liu ◽  
Jihua Zhang ◽  
Peitao Qiu ◽  
...  

This study investigates water-sand bursting disasters associated with fractured rock that affect safe mining in the mining areas of Western China. A broken rock water-sand seepage rheological test device was developed, and rheological tests were conducted on multiple groups of broken rock samples with single-stage axial loading and different load levels. When the rheology of each group of broken rock samples was stable, water-sand mixed fluid was injected into the samples at a certain pressure gradient to conduct water-sand seepage tests on broken rock masses. It was found that when the porosity of a fractured rock mass is within a certain range, the water-sand mixed fluid does not completely pass through the fractured rock mass and some sand particles are filtered by the fractured rock sample. There is an exponential relationship between the sand breaking ability and the sand filtration ability of fractured rock and its initial porosity, and the permeability of fractured rock decreases by a certain extent after sand filtration. However, for different load levels, when the flow through a fractured rock mass tends to be stable, the final porosity of the fractured rock mass decreases exponentially with axial compression. Based on the classical Kelvin rheological model and the basic theory of fractional calculus, a new fractional rheological model has been proposed and the rheological parameters under different load levels were fitted to the model. The new fractional rheological model is better able to describe the rheological characteristics of broken mudstone.




2018 ◽  
Vol 11 (11) ◽  
Author(s):  
Qingfa Chen ◽  
Tingchang Yin ◽  
Wenjing Niu ◽  
Wenshi Zheng ◽  
Junguang Liu


2016 ◽  
Vol 75 (4) ◽  
Author(s):  
W. X. Wang ◽  
W. H. Sui ◽  
B. Faybishenko ◽  
W. T. Stringfellow


2019 ◽  
Vol 83 (sp1) ◽  
pp. 609 ◽  
Author(s):  
Zengqiang Han ◽  
Chuanying Wang ◽  
Sheng Hu ◽  
Yiteng Wang


2020 ◽  
Vol 71 (4) ◽  
pp. 347-358
Author(s):  
DANG Hong-Lam ◽  
THINH Phi Hong

In simulation of fractured rock mass such as mechanical calculation, hydraulic calculation or coupled hydro-mechanical calculation, the representative element volume of fractured rock mass in the simulating code is very important and give the success of simulation works. The difficulties of how to make a representative element volume are come from the numerous fractures distributed in different orientation, length, location of the actual fracture network. Based on study of fracture characteristics of some fractured sites in the world, the paper presented some main items concerning to the fracture properties. A methodology of re-generating a representative element volume of fractured rock mass by DEAL.II code was presented in this paper. Finally, some applications were introduced to highlight the performance as well as efficiency of this methodology.



Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yongjian Pan ◽  
Huajun Wang ◽  
Yanlin Zhao ◽  
Qiang Liu ◽  
Shilin Luo

Water inrush and mud outburst are one of the crucial engineering disasters commonly encountered during the construction of many railways and tunnels in karst areas. In this paper, based on fluid dynamics theory and discrete element method, we established a fractured rock mass mud inflow model using particle flow PFC3D numerical software, simulated the whole process of fractured rock mass mud inflow, and discussed the effect of particle size and flow velocity on the change of pressure gradient. The numerical simulation results show that the movement of particles at the corner of the wall when the water pressure is first applied occurs similar to the vortex phenomenon, with the running time increases, the flow direction of particles changes, the vortex phenomenon disappears, and the flow direction of particles at the corner points to the fracture; in the initial stage, the slope of the particle flows rate curves increases in time, and the quadratic function is used for fitting. After the percolation velocity of particles reaches stability, the slope of the curve remains constant, and the primary function is used for fitting; the particle flow rate and pressure gradient are influenced by a variety of factors, and they approximately satisfy the exponential function of an “S” curve.



Sign in / Sign up

Export Citation Format

Share Document