scholarly journals The Mechanical Alloying Behavior of Fe2O3 into NiO in the High-Energy Ball-Milling Process

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Y. Z. Zhu ◽  
Y. Liu ◽  
H. Huang ◽  
Y. Y. Guo ◽  
S. Y. Yin ◽  
...  

The NiO and Fe2O3 powders were mixed by the high-energy ball-milling, followed by a sintering of the mixture at 1340°C for 0.5 h. XRD, SEM, DSC, and size measurements were preformed to study the microstructure evolution in the high-energy ball-milled mixture and the sintered ones, as well. It showed that the high-energy ball-milling processes resulted in a severe lattice distortion in the powder of Fe2O3, but only a slight lattice distortion in NiO. Meanwhile, a solid solution of iron atoms into the NiO lattice was also detected in the milling process. It was also found that the solubility of the iron atoms into the NiO lattice delayed the synthesizing reaction in the following sintering process.

2016 ◽  
Vol 848 ◽  
pp. 657-663 ◽  
Author(s):  
Sheng Nan Zhang ◽  
Xiao Bo Ma ◽  
Ji Xing Liu ◽  
Jian Qing Feng ◽  
Cheng Shan Li ◽  
...  

FeSe superconducting bulks were prepared with high energy ball milling (HEBM) aided sintering process, within which process, tetragonal β-FeSe superconducting phase could be formed directly with one step sintering process, and the formation of hexagonal δ-FeSe non-superconducting phase was effectively avoided. The influences of HEBM time on the sintering process of FeSe bulks were systematically investigated. With different HEBM time, the phase composition and morphology of precursor powders changed correspondingly, which thus influenced the final phase composition and superconducting properties of FeSe superconducting bulks. Due to the formation of FeSe bulks with larger tetragonal phase content and higher superconducting transition temperature, HEBM time of 6.0 h was recognized as the optimal parameter. Shorter HEBM time could lead to the insufficient decrease of particle size and low density. While longer HEBM time caused the formation of amorphous hexagonal δ-FeSe, which crystallized during sintering process. Thus no more tetragonal FeSe could be obtained. The FeSe superconducting bulk with the critical temperature Tc(onset) of 8.0 K was obtained with the HEBM time of 6 h, and sintering temperature of 700 oC for 12 h.


2006 ◽  
Vol 54 (1) ◽  
pp. 93-97 ◽  
Author(s):  
J.L. Li ◽  
L.J. Wang ◽  
G.Z. Bai ◽  
W. Jiang

1993 ◽  
Vol 8 (2) ◽  
pp. 239-241 ◽  
Author(s):  
P.J. Yvon ◽  
R.B. Schwarz

Mechanical alloying, a high-energy ball-milling technique, is now widely used for preparing alloy powders with metastable phases (crystalline or amorphous). The technique, however, may contaminate the powder with material eroded from the vial and milling media. We report on the analysis and effects of iron contamination on Al25Ge75 powders that we prepared by mechanically alloying mixtures of aluminum and germanium powders, using different mechanical alloying apparatuses.


2001 ◽  
Vol 16 (6) ◽  
pp. 1636-1643 ◽  
Author(s):  
L. B. Kong ◽  
J. Ma ◽  
T. S. Zhang ◽  
W. Zhu ◽  
O. K. Tan

Partially reacted mixtures of Pb(ZrxTi1−x)O3 and its corresponding starting oxide components were obtained by a high-energy ball milling process. The partially reacted powders were characterized by x-ray diffraction and scanning electron microscopy techniques. The sintering behavior of the milled mixtures has demonstrated a distinct volumetric expansion before the densification of the samples, which clearly shows the occurrence of a reactive sintering process of the partially reacted powders. Such process requires a lower densification temperature as compared with the PZT powders produced by the conventional solid-state reaction process. PZT ceramics were found to form directly from the partially reacted powders sintered at 900–1200 °C. The dielectric and ferroelectric properties of the PZT ceramics as a function of sintering temperature and milling time were also studied and discussed.


Sign in / Sign up

Export Citation Format

Share Document